Pensions and health insurance: Variation across regions

John Ruser/Keenan Dworak-Fisher
BEA/BLS

BEA Advisory Committee Meeting
May 14, 2004
Purpose

- Improve estimates of state personal income
- How?
 - Improve state-by-industry estimates of employers’ contributions for employee benefits
 - Pensions
 - Health and life insurance
 - Supplemental unemployment insurance
Current Practice

• National levels for employer contributions are estimated by NAICS 3-digit industries
 – Administrative and survey source data
• National totals are distributed among states by industry
 – Using the distribution of wages and salaries across states for each industry
• State estimates reflect variation in:
 – Industry mix across states
 – Contribution rates across industries
Problem With Current Practice

• Does not reflect variation across states in contribution rates in each industry
 – Same contribution rate for an industry in every state
• Contribution rates vary within industry by
 – Firm size
 – Extent of unionization
 – Worker and job characteristics
Solution

• Use BLS National Compensation Survey data to develop estimates of contribution rates
 – Modeled estimates that generate a unique contribution rate for each state and industry
• Generate contribution levels for each state and industry
 – Contribution rate times wages and salaries
Expected Impact

• Not too big
 – State estimates are benchmarked back to national industry totals
 • Only the variation across states for each industry is affected

• But
 – May affect relative ranks of states
 – Impact more significant in some industries
BLS National Compensation Survey (NCS)

- Quarterly survey of ~35,000 jobs in ~8,000 establishments in 20 compensation categories
- Used to produce
 - Employment Cost Index (quarterly)
 - Employer Costs for Employee Compensation (annual)
 - Inter-area pay comparisons (annual)
 - Employee Benefits Descriptions
Details of ECI Data Used

• Microdata for 1999-2002
 – Private non-agriculture industry only
 – Sample size > 51,000
• Data collected for each sampled job:
 – Cash pay
 • Straight-time wages, premium & leave pay, bonuses
 – Employers’ costs for non-cash compensation
 • Pensions, health & life insurance, supplemental UI
Goal of the Analysis of NCS Data

• Interested in predicting average RATIO of:
 – Employers’ non-cash pay components to Employers cash pay components

• Want to predict this RATIO:
 – Separately by state for each industry

• BEA will use the RATIO to estimate non-cash components for each state and industry
Contribution Rate Model

• Dependent Variable:
 – Non-cash / Cash RATIO for 51,000 job-level observations

• Independent variables:
 – Dummies for state, year, 3-digit NAICS
 – Interacted dummies: 1-digit NAICS by state

• Use a TOBIT to account for zero lower bound
Distribution of Contribution Rates in NCS
Alternative Geographies, Industries

• Investigated Less Detailed Regional Indicators and Less Detailed Industrial Definitions

• Investigated Models Having no Interaction Terms

• F-tests indicated that state, 3-digit NAICS, and interaction terms were jointly significant
Estimated contribution rates (RATIOS)
What Explains Variation in the RATIOS?

- Estimated Model with Varying Sets of Controls:
 - Unionization Rate
 - Wage Levels
 - Average Establishment Size

- Predicted RATIOS with these Controls Held Constant over all state-industry cells

- Compare models in terms of variation in RATIOS
Decomposition Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Specification</td>
<td>0.123</td>
<td>0.059</td>
<td>0.000</td>
<td>0.430</td>
</tr>
<tr>
<td>Union Added</td>
<td>0.118</td>
<td>0.050</td>
<td>0.000</td>
<td>0.390</td>
</tr>
<tr>
<td>Union and Wages</td>
<td>0.118</td>
<td>0.051</td>
<td>0.000</td>
<td>0.394</td>
</tr>
<tr>
<td>Union, Wages, and Size</td>
<td>0.118</td>
<td>0.050</td>
<td>0.000</td>
<td>0.395</td>
</tr>
</tbody>
</table>
Steps to Generate New Compensation Levels

1. Generate new employer contribution levels
 - Wages times modeled contribution rates
2. Control modeled contribution levels to national industry totals
 - Compute new controlled contribution rates
3. Estimate new compensation levels
 - Replace old contribution levels with new contribution levels in compensation
Absolute Difference in State Contribution Rates

Absolute difference in percentages

<table>
<thead>
<tr>
<th>Absolute difference in percentages</th>
<th>Number of states</th>
</tr>
</thead>
<tbody>
<tr>
<td><= .5</td>
<td>13</td>
</tr>
<tr>
<td>>.5 to 1</td>
<td>17</td>
</tr>
<tr>
<td>>1 to 1.5</td>
<td>9</td>
</tr>
<tr>
<td>>1.5 to 2</td>
<td>5</td>
</tr>
<tr>
<td>>2 to 3</td>
<td>3</td>
</tr>
<tr>
<td>>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Absolute Percent Difference in State Compensation Levels

- <= 0.5: 14 states
- > 0.5 to 1: 20 states
- > 1 to 1.5: 7 states
- > 1.5 to 2: 5 states
- > 2 to 3: 1 state
- > 3: 4 states
Problem With Extreme Values

• Sampling and/or measurement error leads to some estimated contribution rates that are either very low or high
• Is this a concern?
 – High contribution rates might have sizeable affects on published BEA industry earnings by state
 – But, model is used to generate contribution rates for every state by industry cell
 • Need to evaluate impact on published estimates
Questions For Committee

• Is using a model a fruitful and technically appropriate way to estimate employer contribution rates?

• How appropriate is the particular model that was used to generate predicted contribution rates? Are there other models that should be studied?

• How might the BEA control for variation in estimates that results from sampling and/or measurement error, and that sometimes results in extreme values?