Data Science @ BEA

Brian Quistorff, Data Science Coordinating Team Amanda Lyndaker, Desktop Applications Implementation Team BEA Advisory Committee Meeting: November 18, 2022

- Update on modernizing BEA's Data Science strategy and implementation
- Data Science Spotlights:
 - $_{\odot}\,$ Improved linking of firms to outside datasets for Direct Investment
 - $_{\odot}\,$ Building a Python library to easily use data from BEA's API
 - Forecasting Regional QCEW
- Comments from Discussants
- Q&A

Opportunity: The increased availability of Big Data, sophisticated analysis techniques, improved tools, and Data Science popularity present a large opportunity to further Mission goals.

Mission goals: Data science touches on each of BEA's four mission goals—(1) accuracy and reliability, (2) relevance, (3) customer service, (4) operational excellence

Data Science Uses at BEA

3

Data Science: Operational Framework

[Open] Executive-Level Office

- Chief Data Scientist and staff
- Oversees execution of BEA's data science strategy

Data Science Coordinating Team (DSCT)

- Reps from BEA's economic and support areas
- Serves as a liaison between new executive-level office and other work areas

Desktop Applications Implementation Team (DAIT)

- Existing groups and teams whose work aligns with data science strategy
- Uses existing frameworks, programs, and infrastructure to execute portions of BEA's data science strategy

Other Cross-Directorate Groups: Research Coordination Committee Software User Groups Workforce Development Team

- Developing a BEA Data Science Curriculum and Toolkit
 - $_{\odot}\,$ Develop draft personas and pilot strategy, working with DAIT
 - $_{\odot}\,$ Sponsor Machine Learning for Economists training
 - $_{\odot}\,$ Continue developing training strategy with DAIT
- Developing a BEA Data Science Project Model as a proof of concept
 - Explore project management structures, including Git and Agile/DevOps
 - $_{\circ}~$ Pilot projects with DAIT

Goal

- Update software, methods, and development frameworks to the latest best practices
- Facilitate collaboration around the bureau via common software
- Reduce onboarding time and cost
- Implement technology supportive of data science

Process

- Review current software profile
- Identify common calculations and processes
- Research alternatives
- Evaluate software against 15 criteria

Recommendation

 In every BEA program area, Python should be adopted as the language of choice for all code involved in the production of statistical products

Infrastructure	Build an IT infrastructure to support Python that is flexible and provides a secure environment.		
Training	Establish a high-quality training program for Python that uses a combination of modalities to develop staff skills.		
Workforce Planning	Formulate a staffing plan to determine the best mix of resources, contracted staff, and career staff to support Python.		
Pilot Projects	Identify and launch pilot projects to learn from hands-on experience and identify resource requirements.		
Common Code	Identify and develop a shared library of applications to support a one- BEA approach to statistical production.		

Project Roadmap

FY22

- ✓ Project Kickoff
- Analyze and assess workforce
- Develop training curriculum
- Develop initial infrastructure
- Execute software and/or support purchases
- Solicit and launch pilot projects
- Create governance framework

FY23

- Complete Pilot Projects
- Adjust infrastructure as necessary
- Develop inventory of applications to migrate to Python
- Mature the governance and best practices
- Develop priority common code
- Determine which software to be kept on the BEA IT platform.

FY24-FY26

- Coordinate the review of existing code to build recode/refactor/rewrite plan
- Execute the migration of existing production code

Spotlights

Spotlight: Entity Matching with BEA Direct Investment Survey Data and Compustat

Larkin Terrie

 International's USDIA and FDIUS surveys contain data that is currently hard to validate

- $_{\odot}\,$ Financial and operating data reported on annual and benchmark surveys
- Income and earnings data reported on quarterly surveys

• One external data source for validation is Compustat, which provides quarterly and annual data on balance sheets, income statements, and cash flow for public companies in the US.

- Many DI survey respondents cannot be matched to Compustat entities
 - Often because many respondents are private and/or relatively small

• Matching has focused on entities with *outward* DI because a larger proportion of them are public and relatively large

- Matching variables: IRS Employer Identification Number (EIN), Company name, Address, Website address, Phone number
- Standardize matching variables
 - Drop special characters (&-,.%/#)
 - From company names, drop common words and abbreviations ("Inc.", "Limited")
 - $_{\circ}$ In address, standardize common abbreviations ("Ave" \rightarrow "Avenue")
- Create link if entities match on
 - $_{\odot}\,$ EIN or name and any other matching variable
 - $_{\odot}\,$ Any three matching variables

- Successfully matched 1,608 of 19,550 U.S. parents in 2019 U.S. Direct Investment Abroad data (8.23 percent success rate)
- Entity matches are driven by EIN and company name

Total Matches for Each Variable Among Matched BEA Entities

Variable	Match Count		
EIN	1,603		
Company Name	1,590		
Url	1,074		
Address	740		
Phone	181		

- Incorporated into auto-editing of 2019 benchmark USDIA survey
- Compustat data was used to help inform the estimates of direct investment earnings for the quarterly surveys during the first quarters of 2020.
- Continuing work to improve the match rate

Spotlight: beaapi A Python library for BEA's API

Andrea Batch

• BEA has an API that allows programmatically collecting data, but data is returned in a way that requires additional work to parse

{"Ordinal":"6","Name":"CL_UNIT","DataType":"string","IsValue":"0"},
{"Ordinal":"7","Name":"UNIT_MULT","DataType":"numeric","IsValue":"0"},
{"Ordinal":"8","Name":"DataValue","DataType":"numeric","IsValue":"1"}],"Data":
[{"TableID":"2018","SeriesCode":"DPCERX","LineNumber":"1","LineDescription":"Personal consumption
expenditures","TimePeriod":"1999Q1","CL_UNIT":"USD","UNIT_MULT":"6","DataValue":"7,618,691","NoteRef":"2018",
{"TableID":"2018","SeriesCode":"DPCERX","LineNumber":"1","LineDescription":"Personal consumption
expenditures","TimePeriod":"1999Q2","CL_UNIT":"USD","UNIT_MULT":"6","DataValue":"7,731,528","NoteRef":"2018"},

• A package can provide data that is ready to work with

```
In [15]: beaData = beaapi.get_data(beaKey, 'NIPA', TableName = 'T10205', Year = 'X', Frequency = 'A')
beaData.loc[beaData['LineDescription'] == 'Final sales of computers']
```

Out[15]:

	TableName	SeriesCode	LineNumber	LineDescription	TimePeriod	METRIC_NAME	CL_UNIT	UNIT_MULT	DataValue	NoteRef
1412	T10205	BB01RC	17	Final sales of computers	1978	Current Dollars	Level	6	11749	T10205,T10205.3
1413	T10205	BB01RC	17	Final sales of computers	1979	Current Dollars	Level	6	15721	T10205,T10205.3
1414	T10205	BB01RC	17	Final sales of computers	1980	Current Dollars	Level	6	20164	T10205,T10205.3

18

• While we have a package for R (bea.R), there is demand for Python:

- $_{\odot}$ Users are asking for a Python package
- $_{\odot}$ Python is the dominant DS language

• We are building a Python package beaapi.

Two core functions:

- 1. Return data from the API in a useful structure
- 2. A faster way to search within select BEA datasets and build API queries.

• Quickly find required API call parameters and search for tables

[12]:	<pre>beaapi.get_parameter_list(beaKey, 'NIPA')</pre>							
t[12]:		ParameterName	ParameterDataType	ParameterDescription	ParameterlsRequiredFlag	ParameterDefaultValue	MultipleAcceptedFlag	AllValue
	0	Frequency	string	A - Annual, Q-Quarterly, M-Monthly	1		1	
	1	ShowMillions	string	A flag indicating that million-dollar data sho	0	Ν	0	
	2	TableID	integer	The standard NIPA table identifier	0	<na></na>	0	
	3	TableName	string	The new NIPA table identifier	0	<na></na>	0	
	4	Year	integer	List of year(s) of data to retrieve (X for All)	1		1	х

• Allows easy filtering and plotting data in Python

Aim to release on GitHub and Python Package index later this year

Spotlight: NowCasting QCEW

Gabriel Medeiros

• Often a conflict between timely and detailed (industry) data

State Employment	Industry detail (NAICS)
Annual Estimate	3- / 4-digit
Quarterly Estimate	2-digit

- Regional would like to extend Quarterly estimates to the same industry detail, but
 - Annual source data (QCEW) is produced with a long lag.
 - Timely data (CES) used for leading quarter, has good coverage only at the 2-digitl level. At 3-/4-digit level it has many missing values.

CES Data Availability (snapshot)

= Coverage

Good coverage for larger states and specialty industries

lea

Bureau of Economic Analysi

- Project goal is to nowcast missing CES data
 - $_{\odot}\,$ If successful could also help improve the detail for Regional Personal Income and GDP
- Difficult as imputations needs to satisfy both geographic and industry hierarchical constraints
- Similar to challenges with other BEA statistics, so evaluate existing in-house tools (KRAS)

- KRAS is a generalized iterative scaling method that can reconcile large systems of linear equations under conflicting external information and inconsistent constraints.
 - Appropriate for hierarchical data (geographies, industries).
 - Resolving conflicting information is an important feature because CES National and CES State data are not consistent.
 - $_{\odot}\,$ Already in use by NEA to balance Input-Output tables.
- The proposed method utilizes additional CES industry detail in a KRAS framework to impute missing information.
- KRAS results are currently being compared to a naive estimation approach (autoregressive model with quarterly dummy variables).

Appendix

Principle 1. BEA is primed for a data science strategy.

Principle 2. Data science is just one piece of the data pie.

Principle 3. BEA's data science strategy is "living."

Principle 4. Data science is a journey—with a destination.

Principle 5. Data science doesn't work in a vacuum.

- 1. Adopt a bureau-wide data science definition that (1) centers around a data science process with three interrelated parts (extract-transform-load, analyze, and communicate) and (2) emphasizes the importance of operational forces, including training, IT resources, hiring and partnerships, and customer service.
- 2. Take a hybrid approach to carrying out data science at BEA, with roles and responsibilities shared by an executivelevel office, a Data Science Coordinating Team, and existing cross-directorate groups.
- 3. Establish a bureau-wide IT posture that readily harnesses cutting-edge data science technologies while (1) maintaining security controls and (2) efficiently using government resources.
- 4. Stand up a comprehensive Data Science Training Program that provides multiple avenues for staff to engage with cutting-edge tools, techniques, and technologies.
- 5. Strengthen BEA's data science knowledge base through strategic hiring and partnerships across BEA program areas and with other agencies, the private sector, and academia.
- 6. Prioritize customer service throughout the data science process.

- 1. In every BEA program area, Python should be adopted as the language of choice for all code involved in the production of BEA statistical products.
- 2. Two applications should be made available to staff for research or analytical activities not involving production code: SAS and R.
- 3. Each program area should determine a schedule detailing when it will be practical to cease all new desktop code development in six applications: Access, BPRL, FAME, MATLAB, Stata, and SQL.

DSCT Action Items

	Short-term progress (Past 6 months)	Medium-term plans (Ongoing/Year 1)	Long-term goal (2– 5 years)
Map out data science roles and responsibilities for cross- directorate groups	 Establish coordination strategy with DAIT Speak on strategy in Research Town Hall 	 Meet regularly with DAIT to identify joint efforts Co-host Data Science Open House Connect to other groups 	 Continue cross-group coordination Support bureau-wide communication on data science
Begin work on developing a BEA Data Science Curriculum and Toolkit	 Develop draft personas and pilot strategy, working with DAIT Sponsor Machine Learning for Economists training 	 Continue developing training strategy with DAIT Conduct pilot test with at least one volunteer per persona Establish communities of practice 	 Develop robust curriculum Feature/sponsor trainings Gather feedback and improve curriculum
Catalog connections between BEA's data science strategy and outside stakeholders	 Develop explainer and post to Data Science Intranet page 	 Develop and update feedback mechanisms (e.g., intranet page, Bureau Beat, meetings with BEA reps to outside groups) 	 Continue coordination with BEA reps to outside groups Support bureau-wide communication on these efforts
Develop a BEA Data Science Project Model as a proof of concept	 Explore project management structures, including Agile/DevOps 	 Explore pilot projects with DAIT Sponsor pilot projects Test processes and gather lessons learned 	 Continue pilots Apply lessons learned to develop best practices
Design the infrastructure for tracking data science projects	 Develop major projects list Define "big data" projects 	 Catalog "big data" projects Feature and update project list on intranet 	 Deploy project tracking method Spotlight cross-cutting projects that feature advanced techniques

11/17/2022