Predictive Testing for Granger Causality via Posterior Simulation and Cross Validation

Gary J Cornwall¹ * Jeffrey Mills² Beau Sauley² Huibin Weng²

¹Bureau of Economic Analysis ²Department of Economics, University of Cincinnati

July 21, 2018

Abstract

This paper develops a predictive approach to Granger causality testing that utilizes k-fold cross-validation and posterior simulation to perform out-of-sample testing. A Monte Carlo study indicates that the cross-validation predictive procedure has improved power in comparison to previously available out-of-sample testing procedures, matching the performance of the in-sample F-test while retaining the credibility of post sample inference. An empirical application to the Phillips curve is provided evaluating the evidence on Granger causality between inflation and unemployment rates.

^{*}The authors gratefully acknowledge support from the Taft Foundation, University of Cincinnati, and feedback from Rick Ashley and participants at the Midwest Econometrics Group Meetings. Any views expressed here are those of the authors and not necessarily those of the Bureau of Economic Analysis or U.S. Department of Commerce. Corresponding author: Jeff Mills, jeffrey.mills@uc.edu, 513.556.2619

1 Introduction

Granger causality testing is a standard procedure for analyzing multivariate time series that has seen widespread use across several disciplines, including economics (Yu et al., 2015; Ghysels et al., 2016; Diks and Wolski, 2016), physics (Dhamala et al., 2008; Barnett et al., 2009; Zhang et al., 2011; Attanasio et al., 2012; Barnett and Seth, 2015), and, more recently, neuroscience (Roebroeck et al., 2005, 2011; Liao et al., 2011; Hu et al., 2016; Barnett et al., 2017; Stokes and Purdon, 2017). Since Ashley et al. (1980), there has been considerable interest in developing tests that provide out-of-sample evaluation of evidence for Granger causality (Diebold and Mariano, 1995; Clark and McCracken, 2001, 2005, 2006; McCracken, 2007; Ashley and Tsang, 2014).

A common thread of the out-of-sample testing literature is that credible Granger causality testing "must rely primarily on the out-of-sample forecasting performance of models relating the original (non-prewhitened) series of interest." (Ashley et al., 1980). This follows Feigl's definition of "causality as predictability according to a law" so that Granger causality can be viewed as providing an evidential step useful for identifying causal relationships (Poirier, 1988). Further, Clark (2004) provides simulation evidence that out-of-sample test procedures avoid the possible spurious results due to overfitting that can arise with in-sample tests. On the other hand, as Inoue and Kilian (2005) point out, there is a loss of efficiency and power with outof-sample tests due to partitioning the data and only using a sub-sample for estimation. This loss of power explains the continued popularity of the insample F-test (Sims, 1972), despite the potential for overfitting and pre-test estimator bias.

This paper develops an out-of-sample Granger causality test with empirical power characteristics close to that of the in-sample F-test, and superior to other out-of-sample tests. It has been shown that, under some conditions, the out-of-sample tests can produce greater power than the in-sample F-test, e.g. when discrete structural breaks are present in the time series (Chen, 2005b). For the majority of data generating processes considered in simulation studies however, the in-sample test provides a substantial increase in power compared to any of the out-of-sample tests currently available, particularly with small samples. Simulation results indicate that even under conditions most favorable to the in-sample F-test (stationary, stable data generating process with i.i.d. errors) the testing procedure herein has power close to that of the in-sample F-test. This is achieved by extending the ideas of Ashley and Tsang (2014), who employ a cross-validation approach to enable out-of-sample evaluation with modest sample sizes, resulting in a test procedure that consistently exhibits superior power to previously developed out-of-sample tests.

The main contributions of this paper are twofold. First, an alternative approach to cross-validation that is popular in the statistics literature, namely k-fold cross-validation and when k = 1 leave-one-out cross validation (LOO-CV), is considered (Stone, 1977; Picard and Cook, 1984; Arlot et al., 2010). This turns out to provide a substantial improvement in the power of the test, and eliminates the need to make an arbitrary choice of partition point. The LOO-CV approach has the benefits of an out-of-sample test of avoiding spurious results due to overfitting and pre-test estimator bias, while the loss in efficiency and power is minimal since only one observation is omitted for estimation purposes.

Second, Bayesian predictive inference and MCMC sampling methods are employed to obtain the posterior predictive distribution of the proposed test statistic. The out-of-sample evaluation using cross validation employed by Ashley and Tsang (2014) results in a statistic, such as a root mean square prediction error (RMSPE) or an F-statistic, with unknown distribution. The out-of-sample "F-statistic" is no longer F-distributed and can be negative because the restricted sum of squares for out-of-sample predictions can be smaller than the unrestricted sum of squares if the restrictions lead to greater predictive accuracy. The approach thus requires asymptotic assumptions or bootstrapping. This paper explores MCMC posterior simulation methods for inference as an alternative. This allows evaluation of the exact posterior density for the test statistic (such as RMSPE) with any sample size, and by adopting the testing procedure developed in Mills (2018), allows computation of posterior odds ratios to compare out-of-sample predictive performance.

The remainder of the paper is organized as follows. The proposed procedure is developed in section 2. Results of a Monte Carlo study examining the efficacy of the proposed procedure are given in section 3. Section 4 provides an empirical example related to the Phillips curve. Section 5 concludes.

2 Testing for Granger Causality via predictive cross validation

The series $x_{1:T}$ is said to Granger cause $y_{1:T}$ if past values of x_t , $x_{1:t-1}$, have additional power in forecasting y_t after controlling for the past of y_t , $y_{1:t-1}$ (Seth, 2007), so that $p(y_t|y_{1:t-1}, x_{1:t-1}) \neq p(y_t|y_{1:t-1})$. Testing for Granger causality (GC) generally takes place in a linear vector autoregression (VAR) model with Gaussian errors. The linear and Gaussian stochastic process assumptions can be relaxed in the following without great difficulty, but will be adhered to herein. Also, we focus on a bivariate model for simplicity of exposition, but the extension to more than two variables is straightforward. The testing framework is then a VAR(p),

$$\begin{bmatrix} \alpha(B) & \phi(B) \\ \beta(B) & \gamma(B) \end{bmatrix} \begin{bmatrix} y_t \\ x_t \end{bmatrix} = \begin{bmatrix} u_t \\ v_t \end{bmatrix}, \begin{bmatrix} u_t \\ v_t \end{bmatrix} \sim \text{MVN}(\mathbf{0}, V), \quad (1)$$

where $\alpha(B), \phi(B), \beta(B), \gamma(B)$ are *p*th order polynomials in *B*, the backshift operator, $Bx_t = x_{t-1}$, i.e., $\alpha(B) = 1 - \alpha_0 - \alpha_1 B - \alpha_2 B^2 - \cdots - \alpha_p B^p, \phi(B) = -\phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p$, etc., and MVN is a multivariate normal distribution with mean vector **0** and covariance matrix *V*, which is assumed to be iid homoskedastic. Homoskedasticity and serial independence of the error terms are imposed for expositional convenience; a more general heteroskedastic and time dependent error covariance structures can be modeled using MCMC in a seemingly unrelated regression framework (Mills and Namavari, 2017).

For equation (1), the null hypothesis that x_t does not Granger cause y_t can be expressed as $H_0: \phi_1 = \dots = \phi_p = 0$, which naturally suggests the in-sample *F*-test widely used in applied research (Sims, 1972). As mentioned above, the drawback with the in-sample *F*-test is that it does not test for a post estimation sample predictive effect, so it is less credible as a true test of GC. The out-of-sample predictive test proposed herein is as follows.

First, the equation for y_t in (1) is rewritten as,

$$Y = Z\Phi + \varepsilon, \tag{2}$$

where Y is a $(T-p) \times 1$ vector containing $y_{p+1:T}$, ε is a $(T-p) \times 1$ vector $[u_{p+1:T} v_{p+1:T}]'$, Z is a $(T-p) \times (2p+1)$ matrix $[\mathbf{1} Y_{t-1} \dots Y_{t-p} X_{t-1} \dots X_{t-p}]$, with $\mathbf{1}$ a $(T-p) \times 1$ vector of 1s, Y_{t-j} a $(T-p) \times 1$ vector containing $y_{p-j+1:T-j}$ and X_{t-j} a $(T-p) \times 1$ vector containing $x_{p-j+1:T-j}$, and $\Phi =$

 $[\alpha_0 \ \alpha_1 \ \dots \ \alpha_p \ \phi_1 \ \dots \ \phi_p]'$. To test whether y_t Granger causes x_t we rewrite the equation for x_t in (1) similar to (2), and test $H_0: \beta_1 = \dots = \beta_p = 0$.

For k-fold cross validation (with k = 1 for LOO-CV), for each value of τ from p + 1 to T - k + 1, omit rows τ to $\tau + k + p - 1$ from Y and Z to construct $Y_{-\tau}$ and $Z_{-\tau}$ such that they contain rows $p + 1:\tau - 1, \tau + k + p:T$ of Y and Z respectively. Adopting the standard Normal-Inverted Gamma prior for the parameters (or Normal-Inverted Wishart for more general covariance matrix specifications), for a model in the form of (2) the conditional posterior distributions are analytically tractable and well known, $\Phi | V \sim N(\bar{\Phi}, \Omega), V | \Phi \sim IG(\nu/2, \delta/2), \bar{\Phi} = \Omega [V^{-1}Z'_{-\tau}Y_{-\tau} + V_0^{-1}\Phi_0], \Omega = [Z'_{-\tau}V^{-1}Z_{-\tau} + V_0^{-1}]^{-1}, \nu = \nu_0 + n, \delta = \delta_0 + (Y_{-\tau} - Z_{-\tau}\Phi)'(Y_{-\tau} - Z_{-\tau}\Phi), with \Phi_0, V_0, \nu_0, \delta_0$ prior parameters. The conditional posterior predictive distribution for out-of-sample predictions of Y is given by, $\tilde{y}_{\tau} | \Phi, V \sim N(Z_{-\tau}\bar{\Phi}, \Omega)$, where \tilde{y}_{τ} is the predicted value for y_{τ} , so an MCMC sample is readily obtained from the Gibbs algorithm (Koop et al., 2007).

Using both k-fold cross validation and Gibbs sampling leads to the following algorithm.

Algorithm 1

- 1. For $\tau = 1 + p : T$ and arbitrary starting value $V^{(0)}$:
 - (a) For i = 1 : M + b, generate draws
 - i. $\Phi^{(i)}|V^{(i-1)} \sim N(\bar{\Phi}, \Omega)$, with $V = V^{(i-1)}$ in $\bar{\Phi}$ and Ω ,
 - ii. $V^{(i)}|\Phi^{(i)} \sim IG(\nu/2, \delta^{(i)}/2)$ with $\Phi = \Phi^{(i)}$ in δ ,
 - iii. $\tilde{y}_{\tau:\tau+k-1}^{(i)}|Z_{-\tau}, \Phi^{(i)}, V^{(i)} \sim N(Z_{-\tau}\Phi^{(i)}, V^{(i)}).$
 - (b) Omit b burn-in draws, returning M post burn-in draws from the posterior predictive distribution for $y_{\tau:\tau+k-1}$.
- 2. Concatenate the $y_{\tau:\tau+k-1}$ draws to produce an $M \times T$ matrix,

$$\tilde{Y} = \begin{bmatrix} \tilde{y}_{p+1,1} & \tilde{y}_{p+2,1} & \dots & \tilde{y}_{T,1} \\ \tilde{y}_{p+1,2} & \tilde{y}_{p+2,2} & \dots & \tilde{y}_{T,2} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{y}_{p+1,M} & \tilde{y}_{p+2,M} & \dots & \tilde{y}_{T,M} \end{bmatrix}.$$
(3)

Applying Algorithm 1 to (2) with Z as defined above produces an ensemble of M realizations, \tilde{Y}_U , of the out-of-sample posterior predictive process

for $y_{1:T}$ that allows for GC from x_t to y_t . Imposing the restrictions in the null hypothesis, equation (2) becomes,

$$Y = W\alpha + \omega, \tag{4}$$

where $W = [\mathbf{1} Y_{t-1} \dots Y_{t-p}]$, $\alpha = [\alpha_0 \ \alpha_1 \dots \alpha_p]'$, and $\omega = [u_{p+1:T}]'$. Defining $W_{-\tau}$ by omitting rows τ to $\tau + k + p - 1$ from W, allows application of Algorithm 1 to equation (4). This produces an $M \times T$ matrix \tilde{Y}_R , with the same structure as \tilde{Y}_U , but generated under the assumption of no GC from x_t to y_t .

Since the precision of parameter estimates decreases as the sample size is reduced, a logical approach is to set k as small as feasible. This will ensure that the precision of the model parameter estimates is close to that for the entire sample. This leads to k = 1, or LOO-CV, as the optimal choice of k provided the computational costs are not too great. However, one potential drawback of LOO-CV is that, if the null hypothesis is true, then consistent estimates of the parameters in the null hypothesis converge to zero asymptotically, so as $T \to \infty$, $\tilde{Y}_U \to \tilde{Y}_R$, suggesting that values of k > 1may lead to more discriminative power for testing. This issue is explored in greater detail in Zhang and Yang (2015). As is demonstrated by the simulation results in Section 3, while LOO-CV is unlikely to be particularly computationally burdensome in standard applications, for reasonable sample sizes, values of k > 1 can be selected without much loss of statistical power and with greater computational efficiency, so exploration over different values of k is a viable strategy.

For example, \tilde{Y}_R for 120 observations generated from a simple AR(1) data generating process (DGP) given by (1) with $\alpha(B) = 1 - \alpha B \gamma(B) = 0$, $\phi(B) = 0$, $\beta(B) = 1$, $V = I_2$ is illustrated in Figure 1. In the Figure, the observed values for the dependent variable are represented by the black line, and the gray area is a plot of the prediction matrix, \tilde{Y}_u . Each grey line is a realization of the posterior predictive process, giving $M = 10^4$ draws from the predictive distribution for each y_t , t = 1 + p : T.

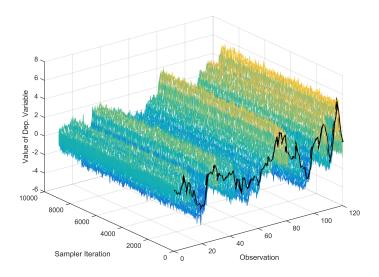


Figure 1: Predictive Ensemble Matrix, Y_U .

To determine the evidence against GC, the two predictive ensembles, Y_U and \tilde{Y}_R , are compared by applying a loss function to obtain a statistical measure of average accuracy for each predictive realization, $\tilde{y}_{1:T,i}$, relative to the actual data $y_{1:T}$. The entire ensemble across the MCMC realizations allows computation of the exact posterior distribution of this statistic, which can then be used to test whether the additional information in x_t , improves predictive performance when predicting y_t .

The L2 norm distance is a standard choice of loss function for both estimation and prediction, leading to the root mean square prediction error measure (RMSPE), with the square root taken to scale the measure to match the predicted variable. L1 loss is also examined, which leads to the robust mean absolute error (MAE) measure of predictive performance.

When applied to a predictive ensemble Y, L2 loss can be expressed as,

$$RMSPE^{(i)} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_{t,i} - \tilde{y}_{t,i})^2}, \quad i = (1, \dots, M).$$
(5)

Applying (5) to \tilde{Y}_U and \tilde{Y}_R gives two $M \times 1$ vectors of draws from the posterior distributions for the RMSPE measures, $d_U = [RMSPE_U^{(1)}, ..., RMSPE_U^{(M)}]'$,

and $d_R = [RMSPE_R^{(1)}, ..., RMSPE_R^{(M)}]'$. If the null hypothesis of no GC is false, these distributions will differ in location and possibly scale. If the null hypothesis is true, the distributions will have similar location, though the variance may differ due to the additional noise from nonzero parameter estimates of the extraneous parameters in the unrestricted model.

There are a number of potential ways to test if these two distributions differ. Since interest is in a null hypothesis of no GC, a test based on a comparison of means is a natural starting point. For the posterior means of $RMSPE_U$ and $RMSPE_R$, $\mu_U = \int zp(d_U = z|y, x)dz$ and $\mu_R = \int zp(d_R = z|y, x)dz$, the no GC hypothesis can be examined by testing $H_0: \delta = \mu_R - \mu_U \leq 0$ vs. $H_0: \delta > 0$.

To facilitate this comparison, the odds against the null hypothesis are calculated using an objective posterior odds ratio (Mills, 2018). This testing procedure does not suffer from the Jeffreys-Lindley-Bartlett paradox and allows the use of the same priors employed for posterior inference, so that scientific objectivity can be maintained. The outcome of the test is determined by the evidence from the data and any background information incorporated in the likelihood and prior. With a relatively uninformative prior, the prior has little to no influence on the test result.

Minimizing expected loss leads to the decision rule: reject H_0 if $O \ge L(H_1|H_0)/L(H_0|H_1) = c_1/c_0$, where c_1 is the loss associated with choosing H_1 when H_0 is true (type I error), and c_0 is the loss from choosing the null when the alternative is true (type II error). The posterior odds ratio is,

$$O = \frac{p(\delta > 0|x, y)}{p(\delta \le 0|x, y)} \tag{6}$$

Critical odds ratio values, c_1/c_0 , that approximately match 10%, 5% and 1% significance levels are 4:1, 7:1 and 30:1 respectively (Mills, 2018).

The testing procedure can be implemented by evaluating the kernel density for the psuedo-sample of M draws from the posterior for δ to obtain $p(\delta > 0|x, y)$ and $p(\delta \le 0|x, y)$, then computing the posterior odds given by equation (6). This circumvents problems due to analytical intractability. The law of large numbers assures that the expected value of any function of the MCMC sample converges to its true value, i.e. for a sample of M draws for z, as $M \to \infty$,

$$\frac{1}{M} \sum_{i=1}^{M} f(z^{(i)}) \to E(f(z)), \tag{7}$$

where $z^{(i)}$ is the *i*th pseudo-sample draw. The accuracy of the simulated posterior density can be increased by increasing the pseudo-sample size, M (Chen, 2005a).

The distributional comparison of predictive performance can be extended to include the second moment, since one can envision situations in which the restricted and unrestricted models produce predictions where $E(\delta|x, y) \approx 0$, but in the presence of more parameter uncertainty have different variance for prediction errors. The derivation of the posterior odds from decision theoretic considerations allows for such an extension by modifying the test loss function. Setting $L(H_1|H_0)/L(H_0|H_1) = c_1\bar{\sigma}_U^2/c_0\bar{\sigma}_R^2$, weights the test decision loss function so that the loss associated with type I and II errors are weighted by the posterior variance of the d_U and d_R distributions, $\bar{\sigma}_R^2$ and $\bar{\sigma}_U^2$.

Dividing both sides of the decision rule by this ratio leads to an augmented posterior odds ratio for evaluating the mean predictive error,

$$AO = \frac{\bar{\sigma}_R^2 p(\delta > 0 | x, y)}{\bar{\sigma}_U^2 p(\delta \le 0 | x, y)}$$
(8)

This can lead to improved test performance in situations in which the mean prediction error is similar for both restricted and unrestricted models, but the variance of predictions for the unrestricted model is greater due to the inclusion of extraneous nonzero parameter estimates for parameters that are actually zero when the null hypothesis is true. The lower mean predictive variance for the restricted model then reduces the probability of a type I error.

3 Monte Carlo Study

In this section, the small sample performance of the new GC testing procedure is evaluated in comparison to the in-sample F-test and the best performing out-of-sample test currently available in the literature, the Ashley and Tsang (2014) AT_{75} test. Empirical rejection rates are computed for each of the tests, with steadily increasing signal-to-noise ratio and the empirical test size fixed at 5% to allow power comparisons.

The in-sample F-test is,

$$F = \frac{(RSS_R - RSS_U)/p}{RSS_U/(T - p - 1)}$$
(9)

where $RSS_U = (Y - Z\bar{\Phi})'(Y - Z\bar{\Phi})$ and $RSS_R = (Y - W\bar{\alpha})'(Y - W\bar{\alpha})$.

The out-of-sample pseudo-F-statistic developed by Ashley and Tsang is computed by splitting the sample into two sub-samples at a partition point, τ , then using estimates from the sample 1 : τ to predict out-of-sample values $\tau + 1$: T, and vice versa. While the choice of τ is arbitrary, Ashley and Tsang provide simulations that indicate an optimal choice of τ at the 75th percentile of the sample for empirical applications. We label this test statistic AT_{75} , which is given by,

$$AT_{75} \equiv \frac{(RSS_R^{\tau} - RSS_U^{\tau})/p}{RSS_U^{\tau}/(T - p - 1)},\tag{10}$$

where, $RSS_U^{\tau} = (Y_{\tau} - Z_{\tau}\bar{\Phi}_{-\tau})'(Y_{\tau} - Z_{\tau}\bar{\Phi}_{-\tau}) + (Y_{-\tau} - Z_{-\tau}\bar{\Phi}_{\tau})'(Y_{-\tau} - Z_{-\tau}\bar{\Phi}_{\tau}),$ $RSS_R^{\tau} = (Y_{\tau} - W_{\tau}\bar{\alpha}_{-\tau})'(Y_{\tau} - W_{\tau}\bar{\alpha}_{-\tau}) + (Y_{-\tau} - W_{-\tau}\bar{\alpha}_{\tau})'(Y_{-\tau} - W_{-\tau}\bar{\alpha}_{\tau}),$ with the subscript τ indicating the sample from 1: τ , and $-\tau$ indicating the sample $\tau + 1:T.$

The distribution of the AT_{75} statistic is unknown; it is no longer Fdistributed because negative F values occur when $RSS_R^{\tau} < RSS_U^{\tau}$, which cannot happen with the in-sample F-test, so either asymptotic distributional assumptions or bootstrapping is required to perform testing.

To evaluate the small sample performance of these procedures, each of the Monte Carlo simulations are carried out for T = 30, 60, 100 as sample sizes. The simulations have also been performed for larger samples, $T \ge 500$, and the results are consistent, though as expected all testing procedures converge to a power of one as T increases.

Consider the data generating process (DGP),

$$\begin{bmatrix} y_t \\ x_t \end{bmatrix} = \begin{bmatrix} \alpha_t & \phi \\ 0 & \gamma_t \end{bmatrix} \begin{bmatrix} y_{t-1} \\ x_{t-1} \end{bmatrix} + \begin{bmatrix} u_t \\ v_t \end{bmatrix}, \quad t = 1, \dots, T,$$
(11)

where both u_t and v_t are i.i.d. N(0, 1). This DGP, from Chen (2005b), is examined in two scenarios; one in which the parameters are time-invariant, $\alpha_t = 0.3 \forall t \text{ and } \gamma_t = 0.5 \forall t \text{ (case 1), and a second in which parameter instability creates a structural break, <math>\alpha_t = \gamma_t = 0.2, t = 1, \ldots, \frac{T}{2}$ and $\alpha_t = \gamma_t = 0.8, t = \frac{T}{2} + 1, \ldots, T \text{ (case 2). In addition, a number of other DGPs were explored, including those in Mills and Prasad (1992), McCracken (2007) and Ashley and Tsang (2014). The results were consistent across all DGPs considered, with the new predictive test showing minimal loss of power when compared to the in-sample$ *F*-test. Additionally, as in Chen (2005b), different partitions were considered for the structural break with consistent results.

Since the size of the in-sample F-test is distorted due to the application of asymptotic theory to such modest sample sizes, the empirical size of all tests was fixed at 5% by simulation of critical values under the null hypothesis. Table 1 shows the empirical size of each test by case and sample size. The clustering of the values around 5% indicates that the empirical rejection rates are comparable.

	Case 1			Case 2		
Sample Size				30	60	100
F	0.048	0.050	0.050	0.052	0.051	0.048
AO	0.050	$0.050 \\ 0.057 \\ 0.053$	0.043	0.057	0.053	0.050
AT_{75}	0.051	0.053	0.047	0.050	0.051	0.044

Table 1: Empirical Size (Nominal Size 5%)

 Table 2: Empirical Power

		${\rm Case}\ 1$			${\rm Case}\ 2$	
Sample Size	30	60	100		60	100
\mathbf{F}	0.320	0.642	0.862	0.344	0.580	0.876
AO	0.322	0.560	0.764	0.342	0.566	0.810
AT_{75}	0.224	0.446	0.698	0.170	$0.580 \\ 0.566 \\ 0.362$	0.520

Table 2 shows the empirical rejection rates over 10^3 iterations when $\phi = 0.30$. Consistent with previous work on out-of-sample testing for GC, the inclusion of parameter instability in the form of a structural break leads to improved performance of AO when compared to the in-sample F. Figures 3a to 3c provide power curves for each sample size examined by increasing the value of ϕ in increments of 0.02 over the interval of [0, 1], with the empirical

size fixed at 5% by selecting the critical value from the simulations when $\phi = 0$, and 500 replications performed at each increment. Figure 3d shows that F and AO have roughly double the power of AT_{75} in terms of sample size required to attain a particular empirical rejection rate.

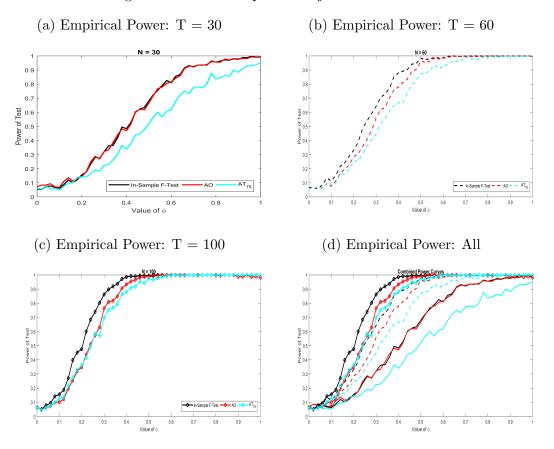


Figure 2: Case 1 Empirical Rejection Rates

Across all three sample sizes and both cases, the proposed test procedure exhibits greater statistical power than AT_{75} , with power close to that of the in-sample *F*-test. The results indicate that structural breaks facilitate an increase in power for the out-of-sample tests.

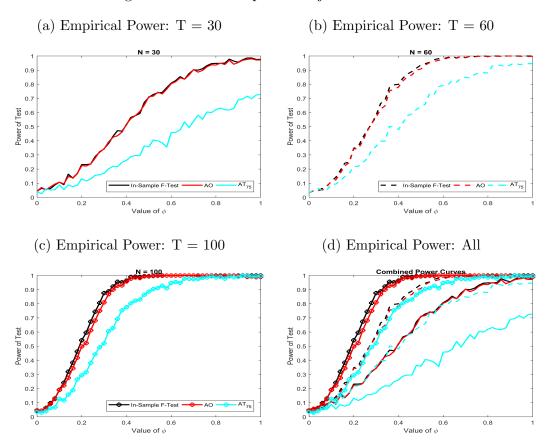


Figure 3: Case 2 Empirical Rejection Rates

4 An Empirical Application

Granger causality testing has seen extensive empirical use in the context of the Phillips curve, evaluating evidence of a predictive relationship between inflation and unemployment (Atkeson and Ohanian, 2001; Clark and Mc-Cracken, 2006; Stock and Watson, 2007; Granger and Jeon, 2011). To evaluate this evidence using the proposed test procedure, data for the following variables were obtained: U.S. Personal Consumer Expenditures (PCE), U.S. Personal Consumer Expenditures excluding food and energy (PCE-Core) (U.S. Bureau of Economic Analysis, 2018b), U.S. Consumer Price Index -All goods (CPI) (Organization for Economic Co-operation and Development, 2018), U.S. Gross Domestic Product (GDP) (U.S. Bureau of Economic Analysis, 2018a), and U.S. Unemployment Rate (URT) (U.S. Bureau of Labor Statistics, 2018). All data are quarterly from 1963 (Q1) to 2018 (Q1), and were seasonally adjusted by the source agency.

The order of integration of each variable was determined by examining the standard deviation and autocorrelation plots pre and post differencing, and the Augmented Dickey-Fuller test. The results indicated that the inflation measures were all integrated of order 2, I(2), whereas GDP and the unemployment rate were both I(1), matching findings in previous studies. Appropriate lag lengths were selected using both the Akaike Information Criterion (AIC) and the Schwarz Criterion (BIC). Table 3 provides GC test results for the full sample. In the table, \neq denotes the null hypothesis of no GC, e.g. $H_0: URT \not\rightarrow CPI$ states the hypothesis that the unemployment rate does not Granger cause the inflation rate as measured by the second difference of the CPI. The in-sample F-test indicates there is sufficient evidence to reject the null hypothesis for two out of the three measures of inflation (CPI and PCE). In contrast, the AO test indicates little evidence to suggest there is a Granger causal relationship for both L1 and L2 loss. As a benchmark, testing $H_0: URT \not\rightarrow GDP$ and $H_0: GDP \not\rightarrow URT$, which one would expect to reject, indicates strong to decisive evidence against the null hypothesis from both the AO and F test. For both the in-sample F-test and the AO test with L1 and L2 loss, the results remain unchanged if first differences of the inflation measures are employed.

Test	In-Sample F	P-Value	AO L1	AO L2
$H_0: \mathrm{URT} \not\to \mathrm{CPI}$	7.27	0.000	1.07	1.16
$H_0: \mathrm{URT} \not\to \mathrm{PCE}$	4.15	0.007	1.08	1.11
$H_0: \mathrm{URT} \not\rightarrow \mathrm{PCEc}$	1.93	0.127	1.00	1.01
$H_0: \mathrm{URT} \not\to \mathrm{GDP}$	36.2	0.000	227.7	73.1
$H_0: \mathrm{GDP} \not\to \mathrm{URT}$	35.0	0.000	84.5	38.0

Table 3: GC Test Results: Full Sample

The sample was also split into two sections, pre and post 1984, based on estimates of the great moderation (Stock and Watson, 2007, Atkeson and Ohanian, 2001). Table 5 shows test results for the post 1984 sample. The insample F-test provides sufficient evidence to reject the null hypothesis for all three measures of inflation. On the other hand, the AO test for both L1 and L2 loss indicates no evidence of Granger causality between the unemployment rate and inflation. Pre 1984 tests can be found in Table 4, where the results are more consistent across the tests, with the in-sample F-test also failing to reject the null hypothesis of no Granger causality for some measures of inflation.

The results from the proposed testing method differ from previous studies in finding insufficient evidence in both pre and post 1984 samples to reject the null hypothesis of no Granger Causality. This supports the assertion by Stock and Watson (2007) that "it has become much more difficult for an inflation forecaster to provide value added beyond a univariate model." Interestingly, if the sample is restricted to only the 1960s, the quintessential example in the literature, then the new testing procedure indicates substantial evidence of a Granger causal relationship.

Table 4: GC Test Results: Post 1984 Sample

Test	In-Sample F	P-Value	AO L1	AO L2
$H_0: \mathrm{URT} \not\to \mathrm{CPI}$	2.67	0.050	1.04	1.04
$H_0: \mathrm{URT} \not\to \mathrm{PCE}$	3.72	0.013	1.00	1.05
$H_0: \mathrm{URT} \not\rightarrow \mathrm{PCEc}$	2.63	0.053	0.99	0.99
$H_0: \mathrm{URT} \not\to \mathrm{GDP}$	10.5	0.000	2.07	2.00
$H_0: \mathrm{GDP} \not\to \mathrm{URT}$	14.8	0.000	5.50	3.99

Table 5: GC Test Results: Pre 1984 Sample

Test	In-Sample F	P-Value	AO L1	AO L2
$H_0: \mathrm{URT} \not\to \mathrm{CPI}$	7.43	0.000	1.68	1.60
$H_0: \mathrm{URT} \not\to \mathrm{PCE}$	2.53	0.063	1.04	1.04
$H_0: \mathrm{URT} \not\rightarrow \mathrm{PCEc}$	1.04	0.378	1.04	1.01
$H_0: \mathrm{URT} \not\to \mathrm{GDP}$	24.9	0.000	119.2	60.2
$H_0: \mathrm{GDP} \not\to \mathrm{URT}$	21.0	0.000	37.7	18.7

5 Conclusion

In this paper, a new out-of-sample Granger causality testing procedure is presented that combines cross validation techniques with MCMC posterior simulation methods. A Monte Carlo study comparing empirical rejection rates for the new testing procedure with the in-sample F-test and the Ashley and Tsang (2014) 75th percentile pseudo-F-statistic indicates that the new test provides substantial improvement in statistical power over existing out-of-sample testing frameworks, for comparable size. Moreover, this new out-of-sample test, under conditions that are ideal for an in-sample test, produces power similar to the in-sample F-test. These simulation results suggest that out-of-sample predictive inference in a cross-validation framework can provide robust testing for Granger Causality even with modest sample sizes. Out-of-sample tests avoid potential over-fitting, pretest estimator bias, and provide a more rigorous scientific procedure. Using the proposed methodology, the exact posterior predictive distribution for any test statistic can be obtained, allowing for inference and testing in small samples.

The proposed procedure was applied to investigate the unemploymentinflation Phillips curve relationship in the U.S., using quarterly data from 1963:Q1 to 2018:Q1. Contrary to the findings from in-sample Granger causality testing, out-of-sample testing finds little evidence of a relationship.

References

- Arlot, S., A. Celisse, et al. (2010). A survey of cross-validation procedures for model selection. *Statistics surveys* 4, 40–79.
- Ashley, R., C. W. Granger, and R. Schmalensee (1980). Advertising and aggregate consumption: an analysis of causality. *Econometrica*, 1149– 1167.
- Ashley, R. A. and K. P. Tsang (2014). Credible Granger-causality inference with modest sample lengths: a cross-sample validation approach. *Econometrics* 2(1), 72–91.
- Atkeson, A. and L. E. Ohanian (2001). Are Phillips curves useful for forecasting inflation? Quarterly Review 25(1), 2.
- Attanasio, A., A. Pasini, and U. Triacca (2012). A contribution to attribution of recent global warming by out-of-sample Granger causality analysis. *Atmospheric Science Letters* 13(1), 67–72.
- Barnett, L., A. B. Barrett, and A. K. Seth (2009). Granger causality and transfer entropy are equivalent for Gaussian variables. *Physical Review Letters* 103(23), 238701.
- Barnett, L., A. B. Barrett, and A. K. Seth (2017). Reply to Stokes and Purdon: A study of problems encountered in Granger causality analysis from a neuroscience perspective. arXiv preprint arXiv:1708.08001.
- Barnett, L. and A. K. Seth (2015). Granger causality for state-space models. *Physical Review E* 91(4), 040101.
- Chen, M.-H. (2005a). Bayesian computation: From posterior densities to Bayes factors, marginal likelihoods, and posterior model probabilities. In D. Dey and C. Rao (Eds.), *Bayesian Thinking*, Volume 25 of *Handbook of Statistics*, pp. 437 – 457. Elsevier.
- Chen, S.-S. (2005b). A note on in-sample and out-of-sample tests for Granger causality. *Journal of Forecasting* 24(6), 453–464.
- Clark, T. E. (2004). Can out-of-sample forecast comparisons help prevent overfitting? *Journal of Forecasting* 23(2), 115–139.

- Clark, T. E. and M. W. McCracken (2001). Tests of equal forecast accuracy and encompassing for nested models. *Journal of Econometrics* 105(1), 85-110.
- Clark, T. E. and M. W. McCracken (2005). The power of tests of predictive ability in the presence of structural breaks. *Journal of Econometrics* 124(1), 1–31.
- Clark, T. E. and M. W. McCracken (2006). The predictive content of the output gap for inflation: resolving in-sample and out-of-sample evidence. *Journal of Money, Credit, and Banking 38*(5), 1127–1148.
- Dhamala, M., G. Rangarajan, and M. Ding (2008). Estimating Granger causality from Fourier and wavelet transforms of time series data. *Physical Review Letters* 100(1), 018701.
- Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics 13(3), 253–263.
- Diks, C. and M. Wolski (2016). Nonlinear Granger causality: Guidelines for multivariate analysis. Journal of Applied Econometrics 31(7), 1333–1351.
- Ghysels, E., J. B. Hill, and K. Motegi (2016). Testing for Granger causality with mixed frequency data. *Journal of Econometrics* 192(1), 207–230.
- Granger, C. W. and Y. Jeon (2011). The evolution of the Phillips curve: a modern time series viewpoint. *Economica* 78(309), 51–66.
- Hu, X., S. Hu, J. Zhang, W. Kong, and Y. Cao (2016). A fatal drawback of the widely used Granger causality in neuroscience. In *Information Science* and Technology (ICIST), 2016 Sixth International Conference on, pp. 61– 65. IEEE.
- Inoue, A. and L. Kilian (2005). In-sample or out-of-sample tests of predictability: Which one should we use? *Econometric Reviews* 23(4), 371– 402.
- Koop, G., D. J. Poirier, and J. L. Tobias (2007). Bayesian Econometric Methods. Cambridge University Press.

- Liao, W., J. Ding, D. Marinazzo, Q. Xu, Z. Wang, C. Yuan, Z. Zhang, G. Lu, and H. Chen (2011). Small-world directed networks in the human brain: multivariate Granger causality analysis of resting-state fMRI. *Neuroim-age* 54(4), 2683–2694.
- McCracken, M. W. (2007). Asymptotics for out of sample tests of Granger causality. *Journal of Econometrics* 140(2), 719–752.
- Mills, J. (2018). Objective Bayesian Precise Hypothesis Testing. manuscript.
- Mills, J. A. and H. Namavari (2017). Objective Bayesian ANOVA Testing. University of Cincinnati.
- Mills, J. A. and K. Prasad (1992). A comparison of model selection criteria. *Econometric reviews* 11(2), 201–234.
- Organization for Economic Co-operation and Development (2018). Consumer price index: Total all items for the United States.
- Picard, R. R. and R. D. Cook (1984). Cross-validation of regression models. Journal of the American Statistical Association 79(387), 575–583.
- Poirier, D. J. (1988). Causal relationships and replicability. Journal of Econometrics 39, 213–234.
- Roebroeck, A., E. Formisano, and R. Goebel (2005). Mapping directed influence over the brain using Granger causality and fMRI. *Neuroimage* 25(1), 230–242.
- Roebroeck, A., E. Formisano, and R. Goebel (2011). The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. *Neuroimage* 58(2), 296–302.
- Seth, A. (2007). Granger causality. Scholarpedia 2(7), 1667.
- Sims, C. A. (1972). Money, income, and causality. The American Economic Review 62(4), 540–552.
- Stock, J. H. and M. W. Watson (2007). Why has US inflation become harder to forecast? *Journal of Money, Credit and Banking 39*(s1), 3–33.

- Stokes, P. A. and P. L. Purdon (2017). A study of problems encountered in Granger causality analysis from a neuroscience perspective. *Proceedings of* the National Academy of Sciences 114 (34), E7063–E7072.
- Stone, M. (1977). Asymptotics for and against cross-validation. *Biometrika*, 29–35.
- U.S. Bureau of Economic Analysis (2018a). Table 1.1.6. Real Gross Domestic Product, Chained Dollars.
- U.S. Bureau of Economic Analysis (2018b). Table 2.4.4U Price Indexes for Personal Consumption Expenditures by Type of Product.
- U.S. Bureau of Labor Statistics (2018). Civilian Unemployment Rate.
- Yu, L., J. Li, L. Tang, and S. Wang (2015). Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach. *Energy Economics* 51, 300–311.
- Zhang, D. D., H. F. Lee, C. Wang, B. Li, Q. Pei, J. Zhang, and Y. An (2011). The causality analysis of climate change and large-scale human crisis. *Proceedings of the National Academy of Sciences* 108(42), 17296– 17301.
- Zhang, Y. and Y. Yang (2015). Cross-validation for selecting a model selection procedure. Journal of Econometrics 187(1), 95–112.