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“. . . the commodities which compose the whole annual produce of the labour of every
country, taken complexly, must resolve itself into the same three parts, and be parceled out
among different inhabitants of the country, either as the wages of their labour, the profits of
their stock, or the rent of their land. . . Wages, profit, and rent, are the three original sources
of all revenue as well as of all exchangeable value.”

— Adam Smith (1776, The Wealth of Nations – Book 1, Chapter VI)

“The heart of the SNA describes how labour, capital and natural resources including land
are used to produce goods and services. These goods and services are used for the three
economic activities recognized in the SNA, production, consumption and accumulation.”

— U.N. System of National Accounts 2008, §3.19

1. Introduction
Land is, quite literally, a foundational asset for any economy. Extending back to at least Smith (1776),
economists have long understood that for households and firms land is both a key input to production
and a substantial asset. Prior research has estimated that, in aggregate, not only is land a considerable
asset in its own right (e.g., Davis (2009), Larson (2015), Wentland et al. (2020)), but the fluctuations in
its value can play a pivotal role in the business cycle, as illustrated by the real estate boom and bust
that coincided with the Great Recession in 2007-2009. This literature has argued that the infamous
housing boom and bust of the 2000s is often mischaracterized, instead suggesting that it would be
more aptly called a land boom and bust (Davis et al., 2017, 2021), citing evidence that much of the
fluctuation in the value of residential property can be attributed to the underlying price of land (see also
Kuminoff and Pope (2013)). Given both its economic significance, policy relevance,2 and the diversity of
approaches used in the literature to investigate the value of this asset, the purpose of this paper is to
revisit a timeless question using new methods and new data: how much is land worth? More specifically,
can modern machine learning (ML) methods using “Big Data" from across the United States deliver
significant advantages over prior approaches and provide new insights into this question or property
valuation more generally?

2Beyond its macroeconomic significance as an asset, from an economic policy standpoint taxation of land has been put forth
by economists since George (1884) as one of the more efficient forms of taxation. As a result, most countries around the
world have either a land tax or property tax on real estate, although one of the frequently cited issues of land taxation is the
inherent difficulty in disentangling land from structure value McMillen and Zabel (2022). In the U.S., property tax revenue
(which land is a large component of this tax base) was $615 billion in 2020, which was larger than corporate income taxes
($276 billion), for example. Source: BEA NIPA Tables 1.12 & 3.5 - https://apps.bea.gov/iTable/index_nipa.cfm.
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This paper shows ML methods can indeed do both. We cultivate a unique approach that pairs ML
methods, kmeans clustering and gradient boosted trees (GBT), with a linear hedonic regression method
to estimate land value at scale, generating granular parcel-level estimates of residential, commercial,
industrial, and agricultural land that we then use to construct national and subnational values. We
find a composite approach outperforms more conventional hedonic methods (as used by the U.K.’s
Office for National Statistics, for example) when we benchmark predicted values from these models
against observable market prices (i.e., in out-of-sample tests predicting transaction prices of single-family
properties and in comparing land values of developed land near vacant land sales). While the primary
contribution of this paper is methodological, we employ the new method in an application to provide a
proof-of-concept detailing how it can scale from microdata to macroeconomic statistics. Specifically,
we construct an aggregate valuation of private land for the entire contiguous U.S. from 2006-2015,
leveraging microdata from Zillow (ZTRAX) containing millions of property transactions and detailed
information corresponding to each property.

Using this new approach, we find private land in the contiguous U.S. was worth an estimated $24 trillion
in 2015, or approximately $19,050 per acre, with large variation by geography and land-use category. For
example, we find that residential land in dense urban areas of the Pacific census division (as defined
by the U.S. Census Bureau) was worth an average of $3,966,805 per acre in 2015, while agricultural
land was worth an estimated $12,275 per acre on average. The U.S. national time-series dynamics we
observe with residential land are consistent with procyclical land value fluctuations over the infamous
boom-bust-recovery period of the last two decades. However, we find a great deal of variation in these
dynamics, as some regions and land-use types experienced much milder cycles (i.e., much flatter peak to
trough) and the timing of this trough also varied by region over this period. In addition, we use the
composite approach to estimate land leverage, or the percentage of the total (i.e., land + structure)
property value comprised by land value for each category and region. Although more stable than land
prices, we find land leverage can still have sizable fluctuations over time and can vary substantially across
regions. On average, land leverage was around 2/3 for single-family properties in New England during
most years of our sample, for example, but is only about 1/4 to 1/3 in the South Atlantic census division.
Finally, our pilot estimates show how this method could help produce a set of land accounts consistent
with international statistical standards set out in the System of Environmental-Economic Accounting
Central Framework (SEEA-CF) and incorporate land onto the balance sheet as a distinct “non-produced,
non-financial asset” prescribed by the U.N. System of National Accounts (SNA). Because this method is
constructed using property-level data, an enduring potential benefit of this project is that the method
can be easily taken off the shelf by researchers, policy analysts, appraisers, local tax assessors, statistical
agencies, central banks, and others with local microdata (using our code or their own adaptation of it),
generating a through line from micro to macro data.
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1.1. Hedonic vs. cost-based approaches to land valuation, trends in accounting, and
fair market value — why now?

Conceptually, one novelty of our proposed approach is that it exemplifies how 21st century methods and
data may have caught up to the accounting standards’ valuation principles. When valuing products,
services, and assets, national economic accounts follow accounting standards set out by the SNA (2008)
and SEEA-CF (2012), which prioritize valuation via observable transactions in the market to obtain their
fair market value whenever possible. When measuring Gross Domestic Product, for example, not all
products and services will have observable market values (e.g., government expenditures) or sufficient
transaction data, necessitating alternatives and even cost-based methods to proxy for market value.
Indeed, a central issue with valuing a nonfinancial asset like land at market value on the balance sheet
is that these assets are often heterogeneous (differing in size, location, quality, etc.), sold infrequently,
and commonly bundled with another asset like a structure in the transaction. In these circumstances,
when similar but not identical assets are sold at market prices, the SNA recommends methods using
market transactions of similar products/assets, which should then make adjustments for quality and
other quantifiable differences.3 This broadly characterizes the hedonic approach to land valuation, which
exploits variation in market prices across heterogeneous assets to estimate the marginal value of each
property characteristic with the intent to separate the value of land and structure components.4 Recently,
the U.K.’s Office for National Statistics (ONS) has applied a hedonic method to valuing land in the U.K.,
adapting the hedonic model used for their House Price Index (HPI) for this purpose (Johannsson and
Nguyen, 2022).

The hedonic approach has gained traction in the 21st century primarily as detailed transaction and
property characteristic data has made it more tractable to do at a national scale.5 Pragmatically,
cost-based approaches are still deployed in the national accounts as a response to lack of sufficiently high

3Regarding valuation using market prices: “When market prices for transactions are not observable, valuation according to
market-price-equivalents provides an approximation to market prices. In such cases, market prices of the same or similar
items when such prices exist will provide a good basis for applying the principle of market prices. Generally, market prices
should be taken from the markets where the same or similar items are traded currently in sufficient numbers and in similar
circumstances. If there is no appropriate market in which a particular good or service is currently traded, the valuation of a
transaction involving that good or service may be derived from the market prices of similar goods and services by making
adjustments for quality and other differences.” §3.123, SNA 2008.

4Regarding hedonic valuation methods: “A more general and powerful method of dealing with changes in quality is to make
use of estimates from hedonic regression equations. Hedonic regression equations relate the observed market prices of
different models to certain measurable price-determining characteristics. Provided sufficiently many differentiated models
are on sale at the same time, the estimated regression equation can be used to determine by how much prices vary in
relation to each of the characteristics or to predict the prices of models with different mixes of characteristics that are not
actually on sale in the period in question. . . The technique has also been used for housing by regressing house prices (or
rents) on characteristics such as area of floor space, number of rooms or location. . . ” §15.83-84, SNA 2008.

5In their description of their HPI model, ONS’s notes that it relies on transaction and property data going back to 1995 in
England and Wales, but as recent as 2004 and 2005 for Scotland and Northern Ireland, respectively. The U.S. data shares
a similar constraint, as we have a great deal of data going back to the mid-1990s, but it is most complete in the early to
mid-2000s for all regions. We return to this discussion in the data section below.

https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/articles/improvingestimatesoflandunderlyingotherbuildingsandstructuresinthenationalbalancesheetuk/2022
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quality market price data for certain assets and products. Hence, a common approach to land valuation
by both national statistical offices and the broader academic literature has been some variation of the
residual method, which usually rely on construction cost data (which is often high-quality and readily
available). For properties containing a structure, this method first estimates the value of the structure
based on construction cost data, then subtracts this value from the total property value, either transacted
or estimated value, where the value left over (i.e., the residual) is the value of the land component.6 This
method should be most accurate for new properties, when the structure was just built, and the market
land value should track the residual derived from this replacement cost relatively well (McMillen and
Zabel, 2022). As the property ages, residual approaches also account for depreciation of the structure
over time to approximate the land value of a new property for the non-new housing stock. This is why
the residual method is also called the “depreciated cost” approach.7 More recently, Clapp and Lindenthal
(2022) and others have developed hybrid variations of this approach, which allow for a more nuanced
decoupling of structure and land value, and the evolution of these values separately over time.8

There are both practical and conceptual challenges with the residual method and other methods that relies
on cost-derived estimates for the national accounts. From a practical standpoint, Statistics Denmark,
for example, had employed a variation of the residual approach where they used construction cost data
in combination with a depreciation schedule of the structure to estimate land value. The 2009 OECD
manual, Measuring Capital, relays the following anecdote based on the Danish experience and how
market dynamics can produce strange results using this method:

“During the recession in the late 1980s, real estate prices declined whereas acquisition prices
for new buildings increased as shown in the figure below. In the PIM estimations of the
net stock of buildings, it was assumed that the prices of existing buildings (for a given age)
followed the prices of new buildings which increased steadily. With decreasing prices for
real estate and increasing prices for buildings, the residual – the value of land – declined.
However, the decrease was so large that the value of land becomes negative for some years
during the recession. A negative value for land is not an economically meaningful result.”
– OECD 2009, p.162

6The OECD Manual Measuring Capital (2009) notes: “Information on the price and quantity of structures and buildings
without land is often more readily available when data on the stock of dwellings uses the perpetual inventory method
with investment series for structures and buildings from the national accounts. Investment surveys on construction permit
relatively easy collection of information on the value of structures excluding land.” (p. 155)

7This includes the pioneering work by Davis and Heathcote (2007), Davis and Palumbo (2008), and more recent variations
using finer, more detailed data like Davis et al. (2021), among numerous others using a variation of the residual/depreciation
cost method. For a more comprehensive review of the residual method and related literature, see also Clapp et al. (2021).

8McMillen and Zabel (2022) describe the Clapp and Lindenthal (2022) approach as a hybrid between a bundled goods
approach and the residual method, which is related conceptually to the “land share" approach of Bourassa and Hoesli
(2022). For more detail, see McMillen and Zabel’s (2022) summary of the of the Journal of Housing Economics’ special
issue on land valuation where these and other methods are showcased.
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Indeed, McMillen and Zabel (2022) noted that, “this somewhat embarrassing outcome is not uncommon”
(p. 4), as researchers have made various adjustments to either the residual method itself, or have imposed
an arbitrary floor on its value.9 From a conceptual standpoint, an additional drawback of residual
methods is that accounting principles in the SNA recommend valuation of market-price-equivalents,
generally favoring fair market value over historic cost-based accounting methods (at least for non-new
properties). While cost-based methods are widely used in the national economic accounts, as noted
above, these methods are primarily used if “no appropriate market” exists or market price data is not
available for a particular good, service, or asset, where cost can be used as a less-than-ideal substitute
for market price.10

The rise of “Big Data” and machine learning in the 21st century has changed this pragmatic dynamic,
not only in the national accounts, but in private sector accounting as well. There has been a longstanding
debate on fair value accounting versus historic cost accounting, highlighting trade-offs with each approach
and circumstances where one may be preferred over the other (Jaijairam et al., 2013). U.S. GAAP
standards, for example, had historically recommended cost accounting methods for non-financial assets
like property, plants, and equipment (PPE), while IFRS standards follow fair market value methods.
However, Warren Jr. et al. (2015) observe that Big Data is facilitating the convergence of the two
standards towards fair market value, “with Big Data . . . helping to construct a global accounting regime
with fair value accounting as a key cornerstone . . . [as] it will enhance measurement process through new
forms of evidence to support management’s accounting for transactions” (p. 404). Recent literature has
also shown how machine learning has been adapted to improve firm-level accounting estimates and why
it is important for accounting going forward Ding et al. (2020); Bertomeu (2020). Broadly, national
accounts and official statistics are on board with this trend and recognize now as an inflection point.11

In their introduction to the NBER volume title Big Data for Twenty-First-Century Economic Statistics,
Abraham et al. (2019) conveyed precisely this sentiment:

“The message of the papers in this volume is that Big Data are ripe for incorporation into the
production of official statistics. In contrast to the situation two decades ago, modern data
science methods for using Big Data have advanced sufficiently to make the more systematic
incorporation of these data into official statistics feasible.”
– Abraham et al. (2019), p. 3

9In response to the Denmark scenario, the OECD (2009) manual has a nod to a the hedonic approach and methods relying
primarily on market prices in the second-hand market: “a way forward would be to use asset prices from the second-hand
market, combined with quality characteristics of transacted real estate. . . [and] this is a very difficult task, but might be
necessary if reliable and consistent estimates for the value of buildings, land and real properties should be produced.” p.
163.

10Regarding cost-based alternatives: “If there is no appropriate market from which the value of a particular non-monetary
flow or stock item can be taken by analogy, its valuation may be derived from prices that are established in less closely
related markets. Ultimately, some goods and services can only be valued by the amount that it would cost to produce
them currently. . . ” §3.135, SNA 2008. We will return to a related cost conceptual issue in section 2.

11See also Moyer and Dunn (2020) for a discussion of Big Data and data science applications in the national economic
accounts.
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1.2. Contributions to the valuation literature and national accounts

This paper makes several contributions to the academic literature. Methodologically, this is the first paper
to apply a two-step machine learning approach, gradient boosting trees paired with kmeans clustering, to
land valuation on a national scale in a way that conceptually tracks a hedonic method. As noted above,
one reason the hedonic method is used by ONS in the U.K. is that the richness of their data is now
reasonably well-suited to explain much of the variation in property prices, as the characteristics in their
regression model explain about 80% of the variation in home prices (Johannsson and Nguyen, 2022). We
find that our ML approach delivers a number of advantages over land valuation using hedonic models
like those used by ONS or in the academic literature like Kuminoff and Pope (2013), Diewert et al.
(2015), Wentland et al. (2020), among numerous others. Using the Zillow ZTRAX data, we compare the
performance of multiple models (a variation of the ONS model, the Wentland et al. (2020) model, and
our GBT model) when predicting prices of single-family residential properties, the land-use category where
the data is richest and our results are most comparable to the literature. On average, the ML approach
models the sales price outcome substantially better than linear (OLS) hedonic models, as evidenced by a
significant reduction in root-mean-square-error and mean-absolute-error in the out-of-sample test set.
Since the structure and land value are essentially decomposed from the coefficients that predict sale
price, this is an important benchmark given that any error in the model’s sales price prediction may be
reflected in the error of its components, and thus the land value estimate.

Second, our adaption of an unsupervised machine learning approach, kmeans clustering, as an alternative
to geographic-specific fixed effects provides a novel path forward for hedonic modeling and property
valuation more generally. As we describe in more detail later in the paper, it transforms the modeling
process into one that more closely mirrors the approach of professional appraisers. In the U.S., for
instance, mortgage underwriters generally require a professional appraisal of the property. These appraisals
typically assess the market value of the property based on nearby, comparable properties (or “comps”).
Location is obviously an important determinant of market value, as any real estate agent will repeat three
times; however, it is not the only determinant of value or source of time-invariant heterogeneity assessed
in the appraisal. Appraisers will often draw on comps located further away (outside a ZIP code or census
tract or some other small unit researchers use for spatial fixed effects) if the other characteristics of
the property are a better match in terms of predicting price. The kmeans clustering algorithm mimics
this approach more systematically by allowing the data to generate groups of comparable properties
that balance this location (latitude, longitude) trade-off and minimize variation in certain property
characteristics (e.g., bedrooms, bathrooms, etc.).

In the context of property valuation, we show the benefit of the kmeans clustering approach is two-fold.
First, it provides a tractable alternative to the well-known “thin cell problem” in urban economics,
where granular spatial fixed effects, such as census tract, often contain too few observations in a
given time period. Recent work by Davis et al. (2021), for example, employ ZIP code fixed effects to
account for geographic-specific heterogeneity, where the initial data includes 18, 322 ZIP codes nationally.
Other studies use census tracts or block groups with even finer spatial granularity. However, there is a



7

well-known trade-off here, econometrically. As the level of fixed effects becomes more fine-grained (i.e.,
the number goes up), there are fewer observations per group in the sample. At some point there may be
very few sales in a given census tract or ZIP code, resulting in many of the usual overfitting problems
and sensitivity to within-group outlier sales.12 We show that a kmeans clustering approach can generate
larger, yet more relevant, groups for predicting price, as it minimizes variation in characteristics of the
property and location much like an appraiser (e.g., a cluster of predominantly 4-bedroom, 3-bathroom
homes in a location that crosses several census tracts or ZIP codes will have far less variation in bedrooms
and bathrooms than a given single census tract or ZIP code). This allows our ML model to incorporate
fewer fixed effects (or clusters) in order to avoid the small N problems among small geographic areas,
while preserving high performance for model fit (as shown by our RMSE/MAE statistics) by grouping
more homogeneous homes across greater dimensions than geography alone. Second, this approach
systematically discretizes the unobserved heterogeneity akin to the approach described by Bonhomme
et al. (2022), mimicking the practice of professional appraisers by grouping more homogenous homes
across observables. As Bonhomme et al. (2022) pioneered in an analogous application, the unobserved
heterogeneity is highly related to these characteristics over which we are generating clusters, where
clustering allows us to "discret[ize] heterogeneity as a dimension reduction device rather than as a
substantive assumption about population unobservables" (p. 2).13 In an era where Big Data and large
numbers of fixed effects (and interactions) are the norm in applied microeconomics more generally, a
key contribution of this paper is to demonstrate an early empirical application of the Bonhomme et al.
(2022) concept that likely has broader applications outside of land valuation.

Third, we show how a simple model stacking method adapted from the forecasting literature can further
improve on the ML approach by creating a weighted composite measure. In our comparison of methods,
we identify circumstances where the linear hedonic method proposed by Wentland et al. (2020) performed
relatively well at predicting property prices (i.e., the ML method is not strictly better in every single
circumstance). Thus, we find the combined linear hedonic (HD) and GBT composite measure outperforms
all methods in out-of-sample tests predicting property prices of single-family homes. As an out-of-sample
test, we compare all methods’ predictions against sales of nearby vacant land. The GBT-alone and
composite measures of land value track the value of vacant land sales closest when the vacant land
market is most robust, at the national peak of new housing starts during our sample period, which is
when we would expect vacant land values to be most representative of nearby developed properties.14

12Davis et al. (2021)and Wentland et al. (2020) sidestep this issue by establishing some arbitrary cutoff that eliminates
geographies that include fewer than 50 sales, for example. However, deciding what this cutoff should be is inevitably ad
hoc and can have a substantial impact on the final results.

13For example, a cluster of predominantly 4-bedroom, 3-bathroom homes in a given location is more likely to have similar
upgraded kitchen features (i.e., unobservable to researchers with this kind of data or “drive-by appraisers” with similar
information) than homes within a given census tract composed of a hodgepodge of 2-bedroom, 1.5 bathroom homes and
5-bedroom, 3-bathroom homes. We return to this point in our description of the kmeans clustering methodology below.

14Our goal was to develop a method steered by transaction prices of developed land to avoid selection bias issues of using
vacant land alone. However, our predictions should still should be reasonably in line with vacant land prices when we
compare apples-with-apples and vacant land markets are most robust. Both developed and vacant properties are relevant
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Given its performance in out-of-sample tests, we then deploy the composite method more broadly to
estimate land value for the contiguous U.S. (and 9 census divisions) for residential, commercial, industrial,
and agricultural land for each year over a decade (2006-2015).

Finally, in addition to the contributions to the academic literature outlined above, this research is highly
relevant to economic measurement and policy, as accounting for land on the national balance sheet is a
notable gap in the national economic accounts for most countries. Although land is clearly a significant
asset, there is virtually no available information directly quantifying the aggregate value of land itself in
the official accounts (either in the U.S. or the vast majority of countries around the world).15 This fact
might be surprising to classical economists like Adam Smith, who mention land explicitly in his early
writings on national output, as well as modern-day economists and decision-makers who use aggregate
data from the national income and product accounts (NIPA) like gross domestic product (GDP) to
understand a wide variety of national economic phenomena. While Wentland et al. (2020) and ONS in
the U.K. provide examples of how this might be accomplished with a linear hedonic valuation approaches,
we build on this by putting forth a unifying, data-driven, composite ML method that substantially
improves on prior approaches and would be replicable by any country around the world with similar
property data available.

More generally, the incorporation of detailed land accounts into the national accounts is part of a broader
international trend in the 21st century in expanding the scope of the national economic accounts to
include more non-produced capital or “natural capital” that quantify the value of our natural resources
(Boyd et al. (2018)), along with a greater interest in information on land prices in particular (Coomes
et al., 2018). In fact, the UN has recently reported that over 90 countries produce at least one SEEA-
based environmental-economic account as of 2021. Yet, the U.S. does not currently produce any formal
environmental-economic accounts. Given that land is an asset at the intersection of the traditional (SNA)
national accounts and environmental accounts, as outlined in the System of Environmental-Economic
Accounting Central Framework (SEEA-CF), valuing land presents a logical starting point for expanding
the scope of what the national accounts measure in the United States. A more systematic, transparent
approach to modeling can provide more confidence in the results by the public; and, if similar methods
are used across countries for national accounts, then it would facilitate comparability of the resulting
statistics. In the Discussion section of this paper, we return to this point, discussing potential next
steps for this work in the context of the national accounts. In addition to potentially building a national

transaction prices. When vacant land transaction prices should exhibit the less selection bias, in periods when there are a
lot of vacant land sales and a lot of development, the difference in our predictions and vacant land price should also be less.
We find exactly this result. We return to this point in our discussion of the results comparing vacant land to predictions.

15Land is categorized as a “non-produced, non-financial asset” on a country’s balance sheet in the SNA standard. In the
U.S., the national asset balance sheet is part of the Integrated Macroeconomic Accounts, which is jointly produced by the
Bureau of Economic Analysis and the Federal Reserve Board. Land accounts are also a distinct set of satellite accounts in
the UN SEEA Central Framework. Prior work by Davis (2009), Larson (2015), and Wentland et al. (2020) has cultivated
a number of different methods to remedy this gap. As of the writing of this draft, BEA has not adopted a particular
method for land valuation, nor does BEA officially endorse any particular method at this time.
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account based on these estimates for macro applications, like Davis et al. (2021), once published, we
intend to make our land value estimates available at a variety of subnational levels to all who would find
them useful in their research, policy-making, or other decision-making.16

2. Measuring land value: conceptual background, literature, and
the hedonic approach

2.1. How is land valued? Some background and discussion of recent literature

Broadly speaking, there are two ways to value land using market data. One approach directly measures
land value by observing what land (without a structure) sells for on the open market and use the market
prices and quantities we observe to total an aggregate value of land, much like one would tabulate the
aggregate value of any commodity, good, or service. But, for a number of reasons, using price and
quantity data alone will not suffice in a vast majority of circumstances. Even in the case of agricultural
land, where this approach might seem most reasonable given that many of the transactions will not
include a structure of any kind, price and quantity alone might not be enough information to generate
a reasonable estimate because of the problem that not all land sells in a given period, and thus the
market sample may not be representative of the land off the market. Further, there is still significant
heterogeneity even among agricultural land in terms of soil quality, geographic proximity to markets and
infrastructure, and numerous other factors that require more than simply prices and quantities.17 Thus,
these core problems (i.e., the fact that not all land sells in a given period, properties are heterogeneous,
and that the land that does sell is typically bundled with a structure) has spawned a deep literature that
utilizes additional information to get at the underlying value of land in a more sophisticated way.

The more common approach to land valuation can be described then as an indirect method, which refers
to a set of approaches that use additional information to estimate the value of land from some other
value (like a total property value containing both the structure and land) or an extrapolation from vacant
land sales (to similar properties with structures, for example). According to the 2015 Eurostat-OECD
Compilation Guide on Land Estimation, these include the residual, land-to-structure ratio (also called
land leverage), and hedonic approaches. A recent symposium of papers by the Journal of Housing
Economics has also included studies that estimate land value from teardowns,18 variations of vacant

16Given that large national datasets are becoming more commonly used in the most recent literature (e.g., Davis et al.
(2021); Nolte (2020); Wentland et al. (2020)), we interpret this micro-to-macro approach to be the new standard in the
land valuation literature.

17The 2015 Eurostat-OECD Compilation Guide on Land Estimation includes a variety of caveats when discussing this
method, even in nearly ideal conditions. It states: “the direct method is normally preferred by countries for the valuation
of agricultural land on which no buildings or structures are situated. . . [however] since the value of land is highly dependent
on several factors e.g., location, land use and the presence of nearby facilities, such information should be incorporated in
the land price data” (p. 60).

18See McMillen and Zabel (2022), which builds on a number of papers using a similar approach, including: Gedal and Ellen
(2018); Munneke and Womack (2015); McMillen and O’Sullivan (2013); Dye and McMillen (2007); Munneke (1996);
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land interpolations,19 and a number of other innovative methods.20

These indirect approaches reasonably assume that the value of the property is the value of the bundled
components of land and associated structure(s). Conceptually, land and the structure(s) are assumed
to be separable assets, and the values of these bundled components do not necessarily move together
(Bostic et al., 2007; Clapp and Lindenthal, 2022). For example, land may appreciate in value over time
while the associated structure depreciates through wear-and-tear or consumption of fixed capital (with
some exceptions and limitations, e.g., historic structures). In its simplest form, we might think of this as
a linear and additive model where the selling price of a property V , the value of the structure psS, and
the value of the plot of land, plL, can be written as:

V = pSS + pLL (1)

where S is the size of the structure, L is the land area, and pS and pL are prices of a unit of S and L

respectively. The challenge then is to best determine either pS or pL given that we have information
on V , L, and S in real estate sales data, or we might be able to infer structure value in other ways
(e.g., construction cost data). Indirect methods differ primarily on how land value is decoupled from the
property’s total value. As we noted in the introduction above, the residual approach – or some variation
thereof – is often used by both governments and academics, as they generally rely on construction or
builder’s costs as replacement costs (e.g., Davis and Heathcote (2007); Davis and Palumbo (2008)).
Other variations of this incorporate demolition costs factored into “teardowns" which are near substitutes
for vacant land (e.g., Rosenthal and Helsley (1994); Dye and McMillen (2007)). Davis et al. (2021)
employ a novel cost-based residual approach by using very detailed appraisal records. Their dataset
constitutes a very large portion of single-family homes in the U.S., and they provide land value results
for various geographies, which we use later in the paper for comparison purposes. However, even
under circumstances where researchers have ideal cost data to pin down the cost of the structure most
accurately, the key question before us is: is this the right conception of land value for the national
accounts?

Rosenthal and Helsley (1994).
19See Albouy and Shin (2022) and Larson and Shui (2022) for original adaptations of interpolating land prices from vacant

land sales using Bayesian and Kriging methods, respectively. For other innovative approaches using vacant land, see also
Nolte (2020), Albouy et al. (2018), Barr et al. (2018), Turner et al. (2014), Nichols et al. (2013), Combes et al. (2019),
and Haughwout et al. (2008). While these studies take a number of sophisticated approaches to try to address various
drawbacks to using vacant land, a fundamental issue with using vacant land transactions is that vacant land may suffer
from important systematic selection issues and unobservable differences. We return to this point later when we discuss
comparisons to vacant land value.

20Zabel (2022),Bourassa and Hoesli (2022), and Longhofer and Redfearn (2022) present novel variations of hedonic and
land-share methods.
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2.2. How should land be valued? A national accounts perspective

Though our review above is not exhaustive, we should acknowledge here an important takeaway from the
literature: there are numerous, reasonable approaches to land valuation that exploit different types of
data to get at this fundamentally difficult question. In fact, the Eurostat-OECD manual on best practices
for land valuation (2015 Compilation Guide on Land Estimation), acknowledges that no method is perfect,
and states that, “there is no ’best’ method; which of these approaches should be used, heavily depends on
the available data sources" (p. 66). However, there are two important aspects from the SNA’s valuation
principles that make the hedonic approach compelling over the cost-based approaches. The first, which
we discussed at some length in the introduction, is the SNA’s emphasis on using observable market
values to the extent possible, which itself is contingent on available data. The second important aspect
of SNA valuation that is relevant here, which we had not touched on in the introduction, is the idea that
the SNA measures value in the market in whatever context goods, services, or assets are exchanged.
The standard emphasizes that, “a market price should not necessarily be construed as equivalent to a
free market price” (SNA 2008, §3.119). The context may be competitive, monopolistic, or somewhere in
between – market value is what prevails in the (imperfect) markets we observe.21

Key assumptions underlying many cost-based approaches, however, are neoclassical assumptions about
competitive markets and rational consumers, which clarify the link between construction cost, structure
value, and market prices. In a competitive market, competition among builders and contractors should
imply that the long-run average (economic) cost of a new structure should approximate its market
value. By extension, this would suggest cost data are good proxies for market value and are broadly
representative. Further, homes built on vacant lots of land would, rationally, be built to their highest
and best use (HBU), as the residual land value then reflects this scenario. Clapp and Lindenthal (2022)
summarize these assumptions and the residual approach being derived from the work of Alonso (1964),
Muth (1969), and Mills (1972) – which is referred to as AMM theory.22 The assumptions underlying
AMM theory may very well characterize a sizable portion of the market in the U.S., but prior empirical
work on construction costs in the U.S. cast doubt on the strongest form of these assumptions. Somerville
(1999) and Gyourko and Saiz (2006), for example, document large differences in construction costs, and
substantial heterogeneity in competitive environments, across U.S. regional markets. If these markets do
not closely approximate perfectly competitive markets, then conceptually the SNA standard would not
favor a valuation method that assumes a residual value derived from free market structure price across
the board.

21Specifically, the SNA goes on to states: “that is, a market transaction should not be interpreted as occurring exclusively
in a purely competitive market situation. In fact, a market transaction could take place in a monopolistic, monopsonistic,
or any other market structure. Indeed, the market may be so narrow that it consists of the sole transaction of its kind
between independent parties.” SNA 2008, §3.119

22Clapp and Lindenthal (2022) note that, “In AMM theory, land values are dependent on a structure that is built to
maximize the present value of the location, i.e., HBU structure. Land value at the time of new construction is a residual
equal to the HBU property value less the construction costs. . . [where] construction cost equals structure value” (p. 1-2).
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This is not necessarily an indictment of AMM theory or methods derived from it that focus on HBU
value; on the contrary, AMM theory and these methods that try to pin down HBU value are incredibly
useful for a variety of purposes. One of the explicit purposes for Clapp and Lindenthal (2022), among
numerous other studies deriving residual-based land value, is to advance land valuation for the purposes
of improving assessments related to taxation. A key argument for land taxes among Georgism proponents
is that a tax on land incentivizes development (George, 1884), which is, in its strongest form, implicitly
a HBU value concept relying on how that land might be used in an efficient market. HBU value is also
highly useful for developers for similar reasons. Nevertheless, because residual/cost-based approaches
rely on a concept of value that assumes land and structure to be in a more ideal state of HBU, from an
SNA perspective, most common residual approaches are not ideal for the national accounts.

The hedonic approach, on the other hand, takes sale prices of properties as they are in the market,
however competitive or monopolistic that market may have been that produced those prices. This
approach regresses actual sale prices of properties we observe in the market on a variety of detailed
characteristics of the land and structure, which yields an estimate of the market value of the structure
using variation in the data from comparable structures and properties. One recent study by Rambaldi
and Tan (2019) described a key advantage of the hedonic method is that “it is a revealed preference
method that estimates the contribution of each characteristic to the overall price” (Rambaldi and Tan
2019, p. 5) as the coefficients each represent an incremental or marginal contribution to the price based
on available data. This allows for a nuanced, location-specific estimate based on observed market prices
as opposed to costs.23

Consider a simple example. Suppose we observe three developed property sales adjacent to one another.
To keep the numbers simple, one sells for $300,000, the second sells for $400,000, and the third property
sells for $500,000 in the same period. The first two properties sit on identical plots of land (say, 1
acre), but the square footage of the second’s structure is twice as large (say, 1,000 vs. 2,000 sqft.).
The third property has an identical structure as the first one (also 1,000 sqft.), but now sits instead
on 2 acres. In this scenario, the hedonic model lines up with intuition. Comparing the first and third
properties with identical structures, the extra acre yielded a $200,000 higher sale price. Comparing the
first and second properties, an extra 1,000 square feet of living area yielded a $100,000 increase in sale
price. Thus, a regression that explains 100% of the variation in sale prices here would simply yield these
values as coefficients on square footage (in 000s of sqft) and acreage if we regressed these exact data
points in a linear hedonic model. While this stylized example abstracts away from numerous complicating
factors when working with real data (like location differences, time period differences, other property
characteristics and market dynamics),24 the basic intuition is that we are using variation in observed

23The hedonic valuation fits with the idea of land value put forth in the 2015 Guide stating that: “on the balance sheet
land should be valued at its current market price (SNA 2008 paragraph 13.16, ESA 2010 paragraph 7.33). . . When market
prices for transactions are not observable, valuation according to market-price-equivalents provides an approximation to
market prices. For example, if the market price of a certain piece of land is not available, prices of land with a comparable
use and location could be used” (p. 25).

24Note, even if there were unobservables here, like the fact that these properties may have different numbers of bathrooms
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market prices and deducing the marginal value from variation in property characteristics. This method is
agnostic about whether these structures were built for their “highest and best use” and simply infers
what its fair market value is based on what the marginal characteristics are selling for on the market, as
the property currently exists, and based on the revealed preferences of the market as we find it.

2.3. The hedonic approach – a baseline method suited to Big Data

Our data, which we will discuss in more detail in section 3, contains detailed information about transactions
and property characteristics. Generally, this type of data is well-suited to a hedonic approach to estimate
land value, as we alluded above in the discussion of its use by the U.K. ONS,25, albeit with some
well-known drawbacks. We adapt (and tweak) the hedonic approaches used in Johannsson and Nguyen
(2022) and Wentland et al. (2020) to establish a baseline approach for comparison to our ML approach
described later in Section 4. The hedonic model typically relies on a standard ordinary least squares
regression model and is generally less intricate than more advanced techniques used by Zillow’s proprietary
automated valuation model, for example, or our ML variant. For residential properties we first estimate
the following for each time period (3 year overlapping window) and state separately:

log(P ) = α + Xβ + Dγ + Dxζ + Qλ + ϵ (2)

where P is an N × 1 vector of observed market prices, X is an N × K matrix of characteristics which
are pertinent to the development of P (e.g., number of bedrooms, bathrooms, garages, square footage
of the living area, acreage, whether the structure has a basement, porch, etc.), D is an N × J indicator
matrix where D = 1 if i ∈ j and 0 otherwise where j indexes the location (e.g., census tract), Dx is a set
of interaction terms where both square footage and acreage of the parcel have been interacted with the
location indicator, and finally Q is an N × T indicator matrix where Q = 1 if i ∈ t and 0 otherwise.26

We interact the location fixed effects with structure square footage and logged acreage, respectively. For
practical reasons, we initially use census tract fixed effects, although we obtained similar estimates using
finer-level geographic fixed effects like census block groups.27 Although this approach is intensive for
processing, it allows the valuation of structure square footage and acreage to vary by a finer geography

or quality of flooring, the observable variation is sufficient to explain 100% of the variation in prices. This can occur if the
unobservables are identical and highly/perfectly correlated with observables, or if the unobservables’ marginal values are
insignificant. We return to this idea of correlated unobserved heterogeneity in our discussion of kmeans clustering below.

25In addition to Wentland et al. (2020) and Kuminoff and Pope (2013) mentioned above, there are a number of other
instructive hedonic studies, including but not limited to: Gong et al. (2018), Burnett-Isaacs et al. (2020), Rambaldi et al.
(2015), and Diewert et al. (2015).

26The Zillow ZTRAX dataset contains quite a bit more information about individual properties that would help with
valuation, but we chose the variables with extensive coverage across all states in the dataset. When compared to a fuller
model that includes many more home characteristics than we end up using in individual states, the marginal gain in
precision was small compared to the potential loss in observations due to missing data in states/localities that do not
regularly report certain variables. In some cases, where a key variable like the structure’s square footage is not reported
widely in a particular state or municipality, we ran the regression without this variable separately. When data becomes
more universally complete across states and regions, we see no reason not to expand the model to include it. However, we
leave extensions to this model that exploit more variables to future work.

27Smaller geographic units, like block groups and blocks, have fewer sales, so the advantages of finer location controls
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than typically available. This is key, as the valuation of these attributes can vary widely across areas within
a state (either for demand-side reasons OR supply-side reasons due to regional variation in construction
markets as described by Somerville (1999) and Gyourko and Saiz (2006), among others. For example, an
additional tenth of an acre for a property in San Francisco, will be valued much differently than the same
amount of space in Sacramento, which this model with interactions allows for the acreage coefficient to
differ by location.28

For the ONS model, we simplify the hedonic model to constrain it to a narrower set of covariates found
in the U.K. HPI model, which include: total rooms, total bedrooms, a binary measure of age (new/old),
local socioeconomic indicators,29 and fixed effects covering ZIP code, land use code, and year. While
the data in the ZTRAX dataset does not exactly align with the U.K. model, we view this as a close
approximation of how their model would perform in the U.S. if the data aligned more precisely. One
might also think of it as a coarser hedonic model than in Wentland et al. (2020), but one that is still
well-aligned with prior literature employing hedonic methods for this purpose.

Within each state and period, we then used these coefficients to compute a land price prediction for
each property in each year, using each three-year overlapping window. Our model generates a total price
prediction for each individual property based on its characteristics. We used the value of the property’s
location and acreage to obtain the underlying nominal land value of each property, based on the following
calculation:

l̃v = expα+Dγ̂+Dx,acreageζ̂+Qλ̂ × exp.5ν2 (3)

where l̃v is a parcel level land value prediction, and ν is the root-mean-square-error of the in-sample fit
for the regression outlined in equation 2. Because we used relatively fine (spatially small) location fixed
effects, all time-invariant local amenities and environmental benefits within each tract (and within the
period of estimation) will be incorporated into the tract coefficients valuing location. Thus, each land
value we estimated for each property will account for net market value of location-specific amenities (to
the extent they are capitalized here).

Due to the nature of the data, several issues arise with the hedonic model that prompt ad hoc decisions
to rectify. One issue in the hedonic estimation of land value is that the tails of the distribution can

need to be balanced with thinness of sales within these areas (which can create some noisiness in the estimates). The
interactions also become problematic for estimation of too many fixed effects in most statistical software packages. We
have also explored a variety of other specifications to improve model fit and predictions, including a linear dependent
variable, where sale price is not logged.

28This interactive fixed effect approach is commonly used in the hedonic valuation literature for housing and land (e.g.,
Kuminoff and Pope (2013) and Wentland et al. (2020)). As we discuss in more detail below, we require a minimum
number of transactions to occur within a location (e.g., tract) over a given period, pooling observations that do not meet
this threshold at a higher geographic level (e.g., county) in a separate regression.

29The socioeconomic indicators used in the U.K. model are somewhat U.K.-specific, so we used available local characteristics
in the U.S. as a close proxy: we have replaced it with measures of affluence from the Socioeconomic Status and
Demographic Characteristics of ZIP Code Tabulation Areas. See https://www.openicpsr.org/openicpsr/project/

120462/version/V1/view for more information.

https://www.openicpsr.org/openicpsr/project/120462/version/V1/view
https://www.openicpsr.org/openicpsr/project/120462/version/V1/view
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often produce extreme values, particularly when there are thin cells (i.e., states and years with land-use
categories having few sales and some extreme sales), from which the model generates a (semi-log)
linear prediction. To avoid making predictions for thin cells, like Davis et al. (2021), we establish a
threshold under which we do not allow observations to be modeled using that fine-grained of a fixed
effect. Specifically, we specified that a given tract have over 30 sales in the three year window for each
model. If this condition was not met within a given tract and period, we estimated models for the
remaining census tracts using higher-level county (FIPS) level geographic fixed effects.30 Moreover, one
reason why we use a three-year running window is that a single year of data will often yield noisier
prediction results for hedonic models using fine fixed-effects, making this threshold of N a more binding
constraint for more of the dataset.

Because there may be noisy predictions for areas with sales marginally above these thresholds, we cull
any outliers above the 1st percentile or above the 99th percentile. These adjustments ensured that model
coefficients were not driven by erroneous or mis-measured data, small samples, or outliers.31 Nonetheless,
a key takeaway from how we deal with these problems, the thin cell problem and outlier problems, should
be that we (and many others), if we are to be transparent about our method and design choices, must
communicate a lengthy description of the nuances and arbitrary thresholds to run these models and get
reliable, reasonable results. We return to this point as a potential problem that data-driven methods like
machine learning can help solve in less arbitrary, more systematic ways.32

2.4. Extending the hedonic model beyond single-family residential

Due to the relatively smaller number of sales for non-SFR properties, we take a few deviations from the
approach described above when we extend the hedonic model to other residential, commercial, industrial,
and agricultural properties. We thus estimated the models separately by census division (i.e., a group of
states) rather than a single state and used a five-year rather than three-year window. This allows the
coefficient estimates of the property characteristics to be derived from more data in order to reduce the
influence of outliers. We also specified the regression to just use census tract location fixed effects (or
county if tract is missing) rather than the two separate models (census tract or county) as we used for
SFR properties. The non-SFR residential properties use the same hedonic controls as the SFR, while the
commercial and industrial regressions are limited to only age, square footage (interacted with location),
and logged acreage (interacted with location) due to the limited number of relevant characteristics

30We lump all remaining counties together under one location fixed effect that do not have enough sales (after removing all
census tracts that met the sales threshold) within the time period.

31One potential issue with the hedonic approach, or any prediction-based multivariate method, is multicollinearity. The
acreage of a property could be highly correlated with the size of the structure (square footage), particularly for land in
dense urban areas. This may produce bias or imprecise estimates of land value if there is a mechanical relation between
these two variables such that value is not meaningfully separable. We examined the correlations between acreage and
square footage of the structure in our data in untabulated analysis. Somewhat surprisingly, we found the correlation was
not particularly high in the U.S. (usually falling within 0.2-0.4).

32For out-of-sample tests comparing predicted prices to actual prices, we use only 80% of the sample, by census tract, and
hold out a random selection of 20%. We return to this point below in our discussion of the out-of-sample tests.
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available in our data.33 The agricultural land models are estimated using county fixed effects and include
square footage, logged acreage, and an indicator for a structure, which is also estimated using the entire
Census Division. We return to a discussion of the data limitations for these land use types at the end of
the paper.

3. Data description
This section describes the property-specific microdata we use to generate national estimates from millions
of data points spanning much of the U.S., along with a number of choices made to clean or restrict the
data for producing higher quality estimates. Specifically, we use the Zillow Transaction and Assessment
Dataset (ZTRAX) that was made available to researchers in academia and government for a limited
period of time (through September 2023).34 It contains market transaction data as well as a large
set of individual property characteristics for sales recorded in local tax assessor’s data.35 Coverage is
generally representative of the United States’ national market, initially comprising 374 million detailed
transaction records across more than 2,750 counties (i.e., 91.5% of U.S. counties). Not all U.S. states
require disclosure of sale prices, so while our data cover a large portion of the country, the price data in
particular have some limitations in coverage, specifically for 13 (mostly rural) states.36 The data include
detailed information on each individual home’s sale price, sale date, mortgage information, foreclosure
status, and other information commonly disclosed by a local tax assessor’s office for each real estate
transaction.

33There is a small, but growing literature on valuation of commercial land and developing price indices for non-SFR properties
like condominiums/apartments, which draw from data sources with different (and in some cases a richer set of) property
characteristics for these land-use types or take an alternative empirical approach. For recent examples, see Nichols et al.
(2013); Diewert and Shimizu (2015); Diewert et al. (2015); Diewert and Shimizu (2017a,b) and Burnett-Isaacs et al.
(2020).

34As we discuss further in Section 7 below, there are a number of limitation to this dataset, and some of them are
straightforward to remedy. Our employer has purchased data from another data provider, Black Knight, that will allow us
to extend this analysis beyond ZTRAX’s current discontinuation date in 2023. Long term availability of national microdata
is important for replicating this method in the future.

35Data are provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information on
accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions do not reflect the position
of Zillow Group. Non-proprietary code used to generate the results for this paper is available upon request to the authors.

36Because some states do not require mandatory disclosure of the sale price, we currently do not have price data for the
following states: Idaho, Indiana, Kansas, Mississippi, Montana, New Mexico, North Dakota, South Dakota, Texas, Utah,
and Wyoming. In addition, some states like Louisiana, Maine, and Vermont have price data but are missing substantial
data in the ZTRAX vintage we use for this study. We omit these states as well. However, our employer has recently
purchased supplemental data from Black Knight that contains sale prices and other relevant information for property
transactions in all of these states, which we may use for filling these data gaps.

http://www.zillow.com/ztrax
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Figure 1. ZTRAX Sale Price Coverage in the Continental U.S.

Note: Some states do not require public disclosure of sale prices, resulting in missing price data.

We join each transaction to each property’s characteristics into a single dataset to be used for our
analysis, so that each transaction has the corresponding property characteristic data from the assessment
dataset. The assessment data include a number of characteristics found on Zillow’s website or a local tax
assessor’s office describing a property: the size of the structure on the property (in square feet), lot size
(in acres), number of rooms, bedrooms and bathrooms, year built, and various other characteristics.37 A
key aspect of this dataset is that it contains detailed information about each property’s location (address
and latitude-longitude) such that this fine-level spatial data can be linked to any level of geography
commonly used in hedonic property analysis.

The dataset from Zillow comes in a somewhat raw form. We therefore scrutinized missing data and
extreme values as part of our initial culling of outliers and general cleaning. Some outliers may arise
because they are either foreclosures or non-arm’s length transactions (which we omit using variables
such as the document type to identify these transactions), but others are typos in the source data (e.g.,
where a municipality records the number of bathrooms as 40), or the property itself is unusual enough
that it would not be an appropriate fit for a model (e.g., if the home did, in fact, have 40 bathrooms, it
is unlikely that each bathroom is valued in the same way as other, more typical properties). Or, this

37Zillow’s ZTRAX data contain separate transaction files by state, where all transactions need to be linked to corresponding
assessment records. With guidance from Zillow, we were able to merge the bulk of the data, but not without some data
loss (which figures into the size of our final sample).
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might signal a misclassification of a property, where a building with 40 bathrooms may actually be a
commercial office building. Hence, we dropped extreme values for price and home characteristics for our
estimates, which is a common practice for recent research using this particular data.38

We also culled the regression samples to limit the influence of outliers on the coefficients. We retain
properties with acreage above zero and below 5,000 acres. We use land use codes and acreage to
classify properties into the land types based on detailed land-use codes as described in Wentland et al.
(2020): dense urban, urban, single-family, rural, commercial, industrial, and agricultural. We initially
removed properties that had extreme values in absolute terms, like a structure smaller than 50 square
feet (agricultural land does not use this constraint) and a price lower than $1,000 or above $30 million.
We then culled by price at the 2.5th and 97.5th percentile by year, land group, and county. We culled
homes with square footage (a home’s living area) below 2.5th or above the 97.5th percentile and year
built (we use year built – median year built so that the intercept is for a home built in the median
year) below the 2.5th percentile. Homes were also winsorized using total rooms at 11, bedrooms at
five, bathrooms at four, and number of floors at three, thus confining the influence of outliers in our
hedonic model. We remove from our model any indicators for the presence of a porch, basement, and
garage if less than 5 percent or more than 95 percent of properties in the land-use type and period had
the amenity (we use 1 and 99 percent for presence of a pool). We remove variables if more than 75
percent of properties in the land-use type and period were missing and recode to the average if less
than 5 percent were missing. Lastly, we remove from our sample any properties (aside from agricultural)
that do not provide some form of structure size (either square footage, bedrooms and bathrooms, or
total number of rooms). While the Zillow dataset contains a vast number of property characteristics,
we primarily relied on the variables above, which have the most coverage nationally to limit how much
data we discarded in our initial analysis. We limited the sample years to 2002 through 2015, as data for
those years are most complete for the vast majority of the states in our sample. One novelty of this time
period is that it offers great variation in time-series dynamics, as it includes intense periods of boom,
bust, and recovery in the U.S. real estate market.

Finally, given that we will be comparing methods in out-of-sample tests, we split our data into an 80%
training sample and a 20% test sample. This split is stratified by census tract to ensure that no census
tract is left out of either sample by chance. Overall, our training set includes 26,415,128 observations
over the sample period while the test set contains 6,608,198 observations. It is important to note that
the training sample is used by all model structures (e.g., our hedonic model, the ONS model, etc.) to
estimate the necessary parameters and performance is judged based on price predictions for the test
set via an appropriate loss function (e.g., root-mean-square error, mean-absolute-error, etc.). Summary
statistics for the training, test, and assessment set are outlined in Table 1.
38See Nolte et al. (2021) for a broad discussion of best practices using the Zillow ZTRAX data, which cites some of our

prior work using this data (e.g., Gindelsky et al. (2019), Wentland et al. (2020), Moulton et al. (2018)). This is a very
useful guide to using the Zillow data; and, while some of the precise thresholds and cutoffs may differ, we follow many
of the general suggestions this paper makes. See also Gindelsky et al. (2023) for a comparison and usage of common
variables in ZTRAX versus the American Community Survey (ACS).
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Table 1. ZTRAX Summary Statistics – Single-Family Residential

Variables 1st Qu. Median Mean 3rd Qu. St. Dev.

Assessment Set

Acreage 0.2 0.2 0.4 0.5 0.40
Square Footage 1256 1680 1923.8 2345 925.80

45,516,219 Observations

Total Rooms 0 6 4.5 6.7 3.20
Total Bedrooms 3 3 2.8 3.2 1.20
Total Baths 1 2 1.9 2.4 0.80
Number of Stories 1 1 1.3 2 0.50
Porch 0 0 0.3 1 0.50
Basement 0 0 0.2 0 0.40
Year Built 1952 1971 1968.7 1993 29.30

Sales Training Set

Price 114,000 190,000 246,101.5 313,491.5 391,543.60
Acreage 0.1 0.2 0.3 0.3 0.40

26,415,128 Observations

Square Footage 1306 1740 1961.3 2398 896.30
Total Rooms 0 6 4.5 6.6 3.20
Total Bedrooms 3 3 2.8 3.4 1.20
Total Baths 1.5 2 2 2.5 0.80
Number of Stories 1 1 1.3 2 0.50
Porch 0 0 0.3 1 0.50
Basement 0 0 0.2 0 0.40
Year Built 1956 1981 1975.6 2002 29.30

Sales Test Set

Price 114,000 190,000 245,962.3 313,500 356,691.30
Acreage 0.1 0.2 0.3 0.3 0.40

6,608,198 Observations

Square Footage 1307 1741 1962.1 2400 896.60
Total Rooms 0 6 4.5 6.6 3.20
Total Bedrooms 3 3 2.8 3.4 1.20
Total Baths 1.5 2 2 2.5 0.80
Number of Stories 1 1 1.3 2 0.50
Porch 0 0 0.3 1 0.50
Basement 0 0 0.2 0 0.40
Year Built 1956 1981 1975.6 2002 29.30

Vacant Land Transactions Price 15,000 42,500 120,590 134,900 205,777.30
1,035,517 Observations Acreage 0.23 0.33 0.59 0.91 0.54

Note: The data available for this project initially covers 36 of 48 states in the continental United States. The
transactions we use occur between 2002 and 2016 and account for more than $8,000,000,000,000 in market value.
The average number of transactions per year is just over 2.1 million. The Assessment data is a snapshot of all single
family houses between 2014 and 2016. The sales test set was created by sampling randomly without replacement
20%, by census tract, of the overall sales transactions.
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4. Methodology – adapting machine learning for hedonic valua-
tion

4.1. Unobserved heterogeneity, kmeans clustering, and the appraiser’s problem

The hedonic valuation of land begins with predicting the overall price of the property from its components
(land + structure). By breaking down the price of a property into its individual components, we can
evaluate the impact of marginal changes to the property (e.g., adding a bathroom) and ultimately
back out the price of the property without its structure components based on variation in market
prices and property characteristics, as discussed above. Hence, given that the hedonic method begins
with a prediction model, our initial motivation for exploring an ML method is to evaluate whether we
can gain new insights into valuing land for each property by making more accurate predictions with
a method more tailored for prediction accuracy (i.e, measuring accuracy using a loss function such
as root-mean-squared-error or root-mean-absolute error). Moreover, in order to avoid what is often
called the "black box critique" of ML methods, our goal across the proceeding three subsections is
to describe our methodology and the underlying mechanisms in sufficient depth so as to allow for
replicability (along with our final code to be made public upon publication) and facilitate feedback for
further improvement/refinement of the approach.

An important concern about this approach, however, is that the data describing the property may not be
exhaustive and there could be relevant unobserved differences in properties that buyers/sellers can observe
but we as modelers/appraisers cannot. That is, we have a rich data set of observable characteristics for
each property (square footage, number of stories, acreage, etc.), but there is a great deal that we do not
observe about the property. Does the home in question have a high-quality roof, or one in need of repair?
Does the home have updated appliances? A more modern floor plan or architectural style? High-quality
flooring or windows? The answers to these are often not available to modelers (although, the data
continue to improve over time) and many professional appraisers. This is a fundamental problem for
appraisers, particularly for "drive-by appraisals" or summary appraisal where the appraiser does not enter
the home and evaluates comparable properties using a Sales Comparison Approach.39 The information
available to them is often far more limited than the information available to the actual buyers and sellers
setting market prices, given that a host of unobservables likely play a role in negotiations and price-setting
in property markets.

To address this unobserved heterogeneity problem, we employ a similar two-step group fixed-effects
process to Bonhomme et al. (2022), which addresses an analogous issue of unobservables associated
with individuals in the labor market. Their paper uses a kmeans algorithm as a classification step to
group individuals in the labor market whose latent types, which need not be discrete, are most similar.

39Regulations on the time period of recent sales and what constitutes a “comparable sale” vary by state, lender, and over
time. Typically, the time period contains a one-year look back and mandatory justifications if comparable characteristics
are not available. Fannie Mae offers a detailed introduction to the Sales Comparison Approach appraisals in their Selling
Guide (p. 596-601).

https://singlefamily.fanniemae.com/media/33041/display
https://singlefamily.fanniemae.com/media/33041/display


21

Similarly, our assumption (and implicitly the assumption of appraisers using comps as the primary basis
for valuation) is that homes with similar observables have a stable distribution of unobservables within
a given group – mirroring the logic of Bonhomme et al. (2022). For example, four-bedroom homes
with more than two bathrooms are likely to have a similar distribution of unobservables, which differ
from two-bedroom, one-bathroom homes. Just as Bonhomme et al. (2022) used group classifications as
fixed effects in subsequent models to account for unobserved heterogeneity across individuals, we group
properties by relevant observables in the assessment set, using these in lieu of geographic-based fixed
effects.

In a way, the two-step group fixed-effects method also mirrors the way in which appraisers evaluate
nearby sales of comparable properties by grouping along relevant observables. For example, if the subject
house is a four-bedroom, three-bathroom house with a two-car garage sitting on a quarter of an acre of
land, an appraiser will identify similar nearby properties that have sold in the recent past and correct for
differences among both observables and unobservables (to our data set). While an appraiser will attempt
to stay within the same neighborhood and school district, often because this is a large driver of home
prices, there is no guarantee that sufficient nearby sales exist. Additionally, there is no guarantee that
the appraisal process will respect other geographic boundaries used my modelers to proxy for location
such as census tracts or block-groups, either.40

To provide context, we have included an [abbreviated] appraisal report from a local brokerage in Maryland
in Figure A the appendix. Note that, along observable dimensions (to our data) such as square footage,
number of bedrooms, and number of bathrooms, the three comparable properties are largely similar
to the subject home. However, there is heterogeneity in other characteristics such as the quality of
construction, the presence of a fence around the the property line, and level of finish in below grade
(e.g., basement) floors. Moreover, in this example, while two of the properties are nearby, less than
0.35 miles, the third comparable is over two miles away; and, two out of the three comparables are in a
different location with respect to the geopolitical boundary. By using the kmeans algorithm to group
structures based on the observable characteristics we are essentially allowing these fixed effects to act
as an appraiser grouping comps on observables, albeit with a substantially larger set of comparables
and a more systematic approach. Like Bonhomme et al. (2022), the appraiser is assuming this process
discretizes the remaining unobservable heterogeneity by creating relatively homogeneous set of houses
along observable dimensions.

Thus, we cluster the assessment data in ZTRAX, which includes the near universe of properties, over a
multi-dimensional space that includes the following characteristics: location (latitude/longitude), number
of bedrooms, number of bathrooms, total rooms, the presence of a porch and/or basement, the presence
of a garage, the number of stories in the structure, and the year the structure was built. This means that,
within a given cluster, we are minimizing the variance of the properties over these dimensions. Each
cluster represents the universe of houses within a state that an appraiser would consider “comparable” to

40For example, Fannie Mae’s (2022) Selling Guide describes this comps process in some detail on p. 598-601 of the Guide.

https://singlefamily.fanniemae.com/media/33041/display
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a subject home. We then apply these time-invariant clusters from the housing stock to those houses that
transacted on the market. Returning to the unobserved heterogeneity, this process also then assumes
that the distribution of unobserved characteristics is relatively stable within the cluster and thus the
influence of that heterogeneity on our predictions will be minimized.

Table 2. Distribution of Within Cluster versus Within Tract Standard Deviations: Ohio Example

Minimum First Quartile Median Mean Third Quartile Max

Generated Clusters

Sales Price (Sales) 29,053 42,518 52,993 61,832 75,187 229,704
Square Footage 160.10 326.90 407.60 424.20 511.90 769.40
Acreage 0.129 0.383 0.464 0.454 0.529 0.722
Bedrooms 0.000 0.139 0.224 0.258 0.393 0.762
Bathrooms 0.000 0.202 0.285 0.297 0.401 0.808

Census Tract

Sales Price (Sales) 4,734 32,825 43,512 50,556 58,743 582,193
Square Footage 40.31 378.33 479.64 479.85 569.97 1058.54
Acreage 0.002 0.100 0.248 0.298 0.492 0.918
Bedrooms 0.000 0.596 0.658 0.655 0.719 1.528
Bathrooms 0.000 0.435 0.549 0.542 0..638 1.226

Note: The values above represent a single state (Ohio) to illustrate the reduction in within cluster variation over
observable hedonic elements. In Ohio there are 370 clusters with an average of 7,142 (5,821) homes per cluster.
There are 2,947 census tracts in Ohio, each of which as an average of 913 (852) homes. Each cluster can be
thought of as a set of comparables that could be used by an appraiser to establish market value.

Much like Bonhomme et al. (2022), which used this process as a dimensionality reduction device, this
process reduces the dimensionality of our price prediction problem. Within a single cluster, this process
generates a more homogeneous set of homes along the clustering variables. Note that we do not include
square footage or acreage in the clustering algorithm and, as a result, the majority of within cluster
price variation is loaded on to these other continuous variables of interest. To be plainer, if all houses
within a cluster have the same observable characteristics and a stable, mean zero set of unobservable
characteristics, then price variation within cluster comes from the size of the plot (acreage) and the
size of the structure (square footage) as well as any location effects. In Ohio, for example, the average
standard deviation on the number of bedrooms within our kmeans constructed clusters is less than 40%
of that of the within cluster standard deviation of census tracts (0.393 versus 0.655), which we show in
Table 2. The maximum standard deviation in our constructed clusters is less than half that of census
tracts. Meanwhile, the size of the clusters is significantly larger than a tract with an average of 7,142
(5,821) homes per cluster as compared to an average tract size of 913 (852) homes. This reduction
varies across states with some states such as California having as little as 10% of the within cluster
variation as compared to that of the census tracts.
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Figure 2. Clustering and Boundaries: An Example

a. b.

c. d.

Note: To illustrate our clustering approach, we have plotted a sample of single family residences in Hamilton
County Ohio (Figure 2a). In Figure 2b we pick a single tract within that county which represents the suburb of
Wyoming and plot all single family residences in the tract color coded by cluster assignment. Figure 2c isolates two
clusters in that area showing how clusters can cross geo-political boundaries such as census tracts. Finally, Figure
2d is a satellite image of that census tract showing the borders are created by artificial landmarks (roads) which
may or may not make sense as a delineation in a fixed effect hedonic type model.

Finally, Figure 2 illustrates how these clusters can cross the common geospatial boundaries used in the
hedonic real estate and urban economics literature. In Figure 2a we show a sample of the properties
in Hamilton County Ohio (the location of Cincinnati, Ohio) color coded by cluster. In Figure 2b we
have isolated a single census tract in the suburb Wyoming. Every property is accounted for, and each
is assigned a cluster which is similarly color coded. In Figure 2c we have that same census tract but
isolating down to two individual clusters to show how they can cross the tract boundaries. We call your
attention to Figure 2d which shows that the eastern boundary of the census tract from Figure 2b is a
road, and our clustering algorithm allows for houses on one side of that road to be compared to the
other; something an appraiser would almost certainly do, but could be obscured by the use of tract fixed
effects.
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4.2. Gradient boosted trees (GBT) paired with kmeans clustering – a new approach

Following Bonhomme et al. (2022), we use these data-driven fixed effects in a second stage estimation
step, employing a gradient boosted trees (GBT) modeling framework to estimate the price as accurately
as possible. Gradient boosting is a learning algorithm which combines individual weak learners [decision
trees] through iterative construction such that each subsequent tree attempts to correct the mistakes of
its predecessor. The gradient being evaluated depends on the loss function chosen given the context of
the modeling. In this case we have chosen the L2 loss function (least squares), 1

2(yi − f(xi)2), with
gradient, −δ(yi, f(xi))/δ(f(xi) = yi − f(xi). In each iteration, a tree is built on a random sub-sample
of the data and this tree is of fixed depth. In our case we have chosen an interaction depth of four
to limit the possibility of overfitting for each individual tree. Note that, for each iteration, the target
is not the sales price of each individual home, but rather the residuals of the previous iteration. This
differs from say a random forest which builds a number of independent trees and then averages the
predictions. The learning rate, or how big of a step along the gradient, is limited for each tree to the
default parameter of γ = .1. In Algorithm 1 we have outlined the generic framework of a gradient tree
boosting algorithm (Friedman et al., 2000; Friedman, 2001, 2002).

Algorithm 1 Gradient Boosting
Input:
Data, D = (X, Y ), and a differentiable loss function, L(y − i, F (x)).
Initialize model with a f0(x) = argmin

γ

∑N
i L(yi, γ)

1. For m = 1 to M :
(a) Compute rim = −

[
−δL(yi,F (xi))

δF (xi)

]
f=fm−1

(b) Fit a regression tree to the target rim giving terminal regions Rjm for j = 1, . . . , Jm.
(c) For j = 1, . . . , Jm compute γjm = argmin

γ

∑
xi∈Rjm L(yi, Fm−1(xi) + γ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm).
2. Output f̂(x) = fM (x).

For each state-year, we apply the gradient boosting algorithm above to the sales data with the estimating
equation:

salesprice = f(latitutde, longitude, sqft, acreage, cluster, yearbuilt). (4)

Our location effects in this case are latitude, longitude, cluster, and year built; where year built is both
an imperfect proxy for structure quality (depreciation) and potentially for the unobserved land amenities
of the property (i.e., the flip-side to the vacant land selection bias – land developed earlier, within a
certain geographic location/cluster, likely has more positive unobservable amenities and infrastructure
than properties built more recently in that area).
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To account for properties that are not sold in a given period, we use the predictive model based on
properties that are sold to project onto the near universe of properties (which is called "assessment data"
in ZTRAX, as the underlying data comes from local assessors’ offices) for both the linear hedonic and
GBT models. This set of properties includes a large number of houses that are not typically observed on
the market. This means we predict the price of homes that are sold in a given period as well as homes
that may never be on the market based on these observable characteristics.

There are a couple of things we would like to highlight about this framework. First, as the tree splits
along the clustering variable, any subsequent splits produce within cluster terminal nodes. For example,
suppose the first split is along the cluster dimension, then any subsequent splits will be of houses that
are homogeneous along the observable characteristics and the terminal node variation on the structure
price will come from the square footage. Second, as the tree branches along latitude and longitude, post
cluster split, it is dividing this comparable set of structures into fine grids of geography, in some cases
much finer than census tracts or even blocks, in others (such as sparsely populated suburban areas)
the geography may be larger than census tracts or even counties. The terminal nodes produced are
relatively homogeneous structures that vary in size within a small geographic region, albeit a region
which is ultimately rectangular.

Finally, similar to the hedonic approach, we treat the plot “as if vacant" by reducing the square footage
of the structure to zero for the purposes of valuing the market value of the land. To do this, our
trained model predicts the new price if the structure characteristic (sqft) is zeroed out. Since tree based
algorithms do not differentiate between sqft = 0 and sqft ≤ 500 we make a small correction to the
structure price by predicting the change in price from increasing every property’s square footage by the
smallest in its cluster. The difference between this new, larger structure prediction and our original price
prediction forms our within cluster correction term. The end result is our prediction of the land value
and it can be written as:

lvi,t = P̃i,t|sqft=0 − γc,t (5)

γc,t = P̃i,t|sqft=sqfti+min(sqftc,t
) − P̃i,t|sqft=sqfti

,

where lvi,t is the land value for property i in time t, P̃i,t|sqft=0 is the predicted price of property i in
time t conditional upon the structure’s square footage being reduced to zero, and γc,t is the correction
term applied to each i ∈ c.

To calculate the price-per-acre at a property-level, we divide the estimated land value, lvi,t by the
observed acreage for the property. For a property with land value of 10, 000 that sits on 0.25 acres
of land this would imply a price-per-acre of 10, 000$/0.25acres = 40, 000 dollars per acre. We do
this at an individual level so that we can then aggregate to any geographic level, j, by calculating
ppaj =

∑n
i∈j lvi/

∑n
i∈j acreagei. 41

41Note that this measure of price-per-acre is one possible value measure and is different than say the average price-per
acre, which would be calculated as ¯ppaj = n−1

i∈j

∑n

i∈j
ppai. The first is the price-per-acre of properties in the jth region
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4.3. Improvement in price prediction and the case for model stacking

Recall that our raison d’être for the approaches described above is developing an “as if vacant" market
value estimate for land underneath privately owned structures, as granular microdata and new methods
should produce better valuations. It then begs a number of (answerable empirical) questions. First, how
much better are the price predictions using this microdata? Second, how much better are the price
predictions when we deviate from a traditional hedonic analysis and move to the two-staged machine
learning structure outlined in the previous section? And third, if there are circumstances where one is
better than the other, can we cultivate a composite approach via model stacking that predicts prices
even better? We answer all three of these questions in this subsection, motivating the final method used
to derive our bottomline results in the next section.

As we mentioned in the introduction, in 2022, the Office of National Statistics (ONS), the national
statistical office of the United Kingdom, released new estimates of the land underlying buildings and
structures.42 For brevity, we will not cover the full model here, but simply note that the key differences
are twofold:

1. The data being used is less detailed than that available in the Ztrax data set. For example the
structure characteristics are limited to number of rooms, type of dwelling, a binary indicator of
dwelling age (old/new), and an indicator if the buyer is a first time buyer or former owner occupier.
Like our hedonic model the model used to produce these land estimates includes location (at the
county or London borough level) and property use (e.g. fixed effects).

2. To supplement this, the ONS model includes socioeconomic indicators (known as ACORN) which
are likely correlated to unobserved structure characteristics such as number of bedrooms, bathrooms,
etc. Moreover, they interact this indicator with the dwelling type and first time buyer indicators.

In an effort to contextualize the improvement in price predictions, both from the richer microdata
available through Ztrax and a progressively more adaptable modeling structure, we approximate the ONS
model on our data and compare the out-of-sample price predictions across each model (ONS, our linear
hedonic model, and the ML supported model).43

weighted by their relative importance (e.g., smaller more expensive plots of land are more valuable than larger, cheaper
land) whereas the second is the price-per-acre of the average plot in the jth region.

42See ’Improving estimates of land underlying other buildings and structures in the national balance sheet, UK: 2022’ for a
full accounting of the ONS methodology and release information.

43While the ACORN measure of neighborhood status has no analogue in the U.S. statistics we have replaced it instead with
measures of affluence from the Socioeconomic Status and Demographic Characteristics of ZIP Code Tabulation Areas.
See https://www.openicpsr.org/openicpsr/project/120462/version/V1/view for more information.

https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/articles/improvingestimatesoflandunderlyingotherbuildingsandstructuresinthenationalbalancesheetuk/2022
https://www.openicpsr.org/openicpsr/project/120462/version/V1/view
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In Figure 3 we show the distribution, by state, of mean-absolute-error ratios for each model. Specifically,
we calculate these ratios as:

MAEa

MAEb
=

∑n∈test
i,a |p̃i,a − pi|∑n∈test
i,b |p̃i,b − pi|

, (6)

where p̃i,a is the predicted price for the ith observation for model a for each state in the ZTRAX dataset
for which we have sale price data. A value of less one here indicates that model a has lower MAE,
out-of-sample, than that of model b. For example, in Figure 3a model a is the hedonic model we specified
earlier in Section 2.3, and model b is the approximation of the specification used by ONS.

Figure 3. Mean Absolute Error Comparison: Distribution by State from 2004-2015

a. Linear Hedonic Model versus ONS Model b. Gradient Boosted Trees versus ONS Model

c. Gradient Boosted Trees versus Linear Hedonic Model

Note: All comparisons are made using the out-of-sample transaction set which is 20% of the sales sample by census
tract. To construct these plots we take the ratio of Mean Absolute Errors for each model and plot the resulting
distribution across years for each state. For example, in Panel 3a, we have divided the out-of-sample MAE of the
proposed linear hedonic model by the model put forth by the U.K. Office of National Statistics. A value less than
one indicates that the MAE of the linear hedonic model contained herein is lower than that of the model proposed
by ONS.
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The results in Panel (a) of Figure 3 show the mean-absolute-error distributions by state over the
2004-2016 range are lower for the hedonic model we propose than the simpler ONS model, indicating
that a richer data set and a more granular level of fixed-effects with appropriate interactions is likely a
better predictor of overall price. There are exceptions within each state as some years may favor the
ONS version of the model over that we have proposed and in a state such as South Dakota, where
sales are thin and the data is very limited a coarser model (ONS) can perform better. Moving over
to Panel (b), we see further improvement with all state-year distributions favoring the combination of
data driven clustering and gradient boosted trees over the (approximate) ONS model across the board.
However, the results from Panel (c) comparing our hedonic with GBT shows that for some states (like
California) and state-year combinations (New Jersey, Ohio, and Connecticut for example) the more
granular hedonic model can out-perform our machine learning approach in out-of-sample price prediction
accuracy in some circumstances. The potential reasons for this are manifold. For example, in some states
neighborhoods and census tracts are more homogeneous than others, limiting the value-added of kmeans
clustering. Recall that we noted above California census tracts are more homogeneous across observable
characteristics, as clusters there only showed a modest reduction in variance over observables. Further,
being a relatively large volume market, the richness of the California sales data likely contributes to the
performance of the linear hedonic method. While we leave further investigation of these differences to
future research, the main takeaway from this comparison is that more granular data opens the door for
improved performance of linear hedonic methods and the GBT method provides enhanced predictive
accuracy in most (but not all) state-year combinations.

Although GBT outperforms all other models in price predictions in the vast majority of circumstances,
there is still some ambiguity in which model we should prefer for a unified method estimating land value
for the entire country. We thus draw on a rich literature surrounding forecast averaging (see Granger and
Ramanathan (1984), Elliott and Timmermann (2004), Timmermann (2006), and Hansen (2008) among
many others for examples), which argues that we do not need to choose a single model. In fact, since
some state-year prices have lower out-of-sample error when using the hedonic model, and (the majority
of) others are better predicted using our machine learning approach, the forecast averaging literature
provides a straightforward solution: combine the predictions in order to generate composite price and
land value predictions weighted in favor of the better model in each context. While there are many
ways to combine forecasts – arithmetic average, eigenvector weighting, and complete subset regression
with information theoretic weighting, to name a few – we have chosen one of the more straightforward
ways to combine our forecasts, a simple regression. We implement our forecast combination using the
following equation:

pi,j,t = αj,t + β1p̃HD
i,j,t + β2p̃GBT

i,j,t (7)

where pi,j,t is the observed price for the ith observation in the jth state in the tth period from the 20%
test set, p̃HD

i,j,t is the price prediction for that same property by the hedonic model we outlined in Section
2, p̃GBT

i,j,t is the price prediction for that same property by the machine learning model we outlined in
Section 4, and finally αj,t is a state-year specific bias correction term. It is important to note that these
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weights need not sum to one, nor must they both be positive. Yet, the intuition is straightforward, as
the composite value gives greater weight to a given model prediction if that model predicts the sale price
of the property in a given state more accurately.

Figure 4. Mean Absolute Error Comparison: Distribution by State from 2004-2015

a. Composite Forecast versus ONS Model

Note: All comparisons are made using the out-of-sample transaction set. To construct these plots we take the ratio
of Mean Absolute Errors for each model and plot the resulting distribution across years for each state.

We have included in an online appendix (Figure B) a figure which outlines the distribution of weights
and the bias correction term by year for all states. The predictions put forth by the our GBT model are
nearly uniformly preferred by weight over those produced by the hedonic model though both distributions
are clearly different from zero. The bias terms tend to be negative overall which indicates that the
predictions we do tend to over-predict relative to the true value. These weights are also informative as the
overall mean-absolute-error, relative to the ONS model, is significantly less for the composite prediction
compared to either of our original models. Figure 4 we see that the ratio of mean-absolute-error between
the composite predictions and the ONS model is completely in favor of the composite for all state-year
combinations.

We then apply these weights to the land values directly by the following equation,

l̃v
comp
i,j,t = α̂j,t + β̂1 l̃v

HD
i,j,t + β̂2 l̃v

GBT
i,j,t , (8)

where the land values are calculated from equation 3 and 5 respectively. Our explicit assumption here is
that forecast error from the price is equally weighted between structural error and land error and thus
the weights are not different. This composite method is the default method for the results reported in
the next section.
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5. Results
One challenge with granular, property-level land value predictions is that we generate millions of results
over a decade-long sample, which can then be reported in countless ways. Thus, in this section, we
proceed by reporting a handful of tables and figures that are useful for illustrating national and regional
trends for 2006-2015, but only scratches the surface of how this data can be reported. First, we begin
by reporting land value and leverage in Table 3 for single-family residential land underlying structures
(labeled Suburban Residential in subsequent tables), using the composite method combining GBT and
hedonic methods described in the previous section. This category is both the most valuable land in
aggregate and, for comparison with other studies, it is one of the most common types of land valued
in the academic literature. Second, in Tables 4 and 5, we provide price-per-acre estimates for the
remaining residential categories (dense urban, urban, and rural) as well as agricultural, commercial, and
industrial land. Third, in Table 6, we provide aggregates estimates of land value for the contiguous U.S.
for all land groups, broken down by census division. In the online appendix, we further break out the
results by state-year combinations and the final results, once published, will include further geographic
disaggregations.44

5.1. Single-family residential (suburban) land value and land leverage results

Table 3 shows the price-per-acre and land leverage for single-family residential land from 2006 through
2015 across nine census divisions in the United States. These results highlight tremendous variation both
across and within regions over time, conforming to the already well-established time-series dynamics that
land value experienced a bust following the 2006-07 highs in the real estate markets, bottoming out over
the next few years, and subsequently rebounding over the latter half of the sample period. While volatile
over this period, the Pacific region, for example, maintained the highest value for single-family residential
land, averaging nearly $850,000 per acre over this decade. The regions with the least expensive land
value for single-family residential property were in the South. Based on the predicted prices and land
values leverage (i.e., the ratio of land value to price), was anywhere between a low of 18% to a high
of 71% during the decade with again, the lowest leverage values appearing in the West South Central
division while the highest leverage appeared in the New England division.

44We use census divisions and regions defined by the Census Bureau in subsequent tables and figures for a variety of reasons.
Aesthetically, these aggregations can fit on a page in a single, relatively easy to read, table or figure. Given that some
states are missing sale price data, another benefit to using divisions and regions is that we can aggregate to the national
level if we assume that the missing states are reasonably represented in the division by the states we do have in the
ZTRAX data. We return to this limitation in the Discussion section below.
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Table 3. Division Single Family Residences: Composite Values

Division 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Price-Per-Acre

New England 434,588 419,234 369,838 337,840 326,284 314,062 303,167 307,869 310,125 320,281
Middle Atlantic 364,889 358,524 333,303 306,809 292,496 263,358 253,027 252,038 256,660 265,617
East North Central 248,280 235,753 195,028 180,380 159,612 141,387 138,216 150,598 164,825 173,337
West North Central 232,791 229,238 195,179 184,856 173,290 171,461 180,573 183,412 198,405 *
South Atlantic 205,955 186,170 153,845 114,920 99,239 92,102 100,516 108,945 122,842 139,027
East South Central 60,523 58,054 51,751 52,870 78,011 94,258 90,055 93,358 98,028 *
West South Central 43,882 46,819 46,459 41,903 40,330 40,029 30,493 31,501 31,145 36,275
Mountain 447,296 419,146 348,187 268,319 280,345 269,931 289,090 323,258 365,238 420,114
Pacific 1,156,633 1,107,416 777,423 646,459 665,014 621,963 638,000 808,057 936,628 1,084,222

Leverage

New England 0.71 0.71 0.68 0.68 0.65 0.65 0.66 0.66 0.68 0.70
Middle Atlantic 0.49 0.49 0.49 0.48 0.47 0.44 0.43 0.41 0.40 0.40
East North Central 0.49 0.48 0.46 0.47 0.42 0.39 0.36 0.36 0.36 0.38
West North Central 0.49 0.50 0.42 0.43 0.40 0.43 0.44 0.43 0.43 *
South Atlantic 0.37 0.34 0.34 0.30 0.25 0.23 0.24 0.24 0.26 0.29
East South Central 0.30 0.28 0.24 0.26 0.44 0.58 0.54 0.54 0.54 *
West South Central 0.23 0.23 0.22 0.20 0.19 0.19 0.14 0.13 0.13 0.15
Mountain 0.42 0.41 0.41 0.36 0.39 0.39 0.39 0.38 0.39 0.42
Pacific 0.56 0.55 0.49 0.45 0.43 0.42 0.42 0.45 0.48 0.51

Note: Recall that price-per-acre is calculated as the sum of all land values in an area divided by the sum of all acreage
in that area in the assessment set. This is fundamentally a different centrality measure than the price-per-acre of
the average plot, though both are reasonable. Values for West North Central and East South Central in 2015 have
been suppressed due to data issues. Leverage is calculated by dividing the predicted land value by the predicted
price and averaging over the region. In this sense leverage is that of the average plot of land in the region. All
dollars are nominal.

In Figure 5 we collapse single family residences down to the four regions of the continental U.S. (as
designated by the U.S. Census Bureau) to illustrate the time-series dynamics across regions and three
different models. All models in all regions show procyclical movement in land prices, consistent with
the notion that land prices fluctuated directly with the demand shocks to the real estate markets over
this period. Overall the price-per-acre of the two-step kmeans-GBT method outlined in Section 4 shows
lower overall land values for all four divisions than the hedonic model. The composite value tends to
be closer to the former rather than the latter, though they are not equivalent. This hides some of the
variation that would be seen between states, as there are certainly states, such as California, where the
composite value is almost perfectly in between or even favoring the hedonic values overall.
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Figure 5. Region Price-Per-Acre

a. Midwest Region b. North East Region

c. South Region d. West Region

Note: In each plot we have grouped the states according to their regional designation from the U.S. Census Bureau.
These are weighted by the number of homes in the assessment set so that larger states will have more influence
in the plot. Composite figures are computed by using by state-by-year weights from the observed sales price and
predicted prices from each model. Please note, y-axis scale is not common across each of the sub-figures.

One takeaway we gleaned from these regional comparisons (and state-by-state comparisons in the online
appendix) is that the ML method contained herein does “more with less." When a market has highly
detailed data and a swift flow of transactions, the hedonic model tends to do quite well predicting the
price and thus land value. In markets, either by state or land type, where the market is thinner, the
ML model tends to have fewer issues with extreme values and better processes heterogeneity among
individual parcels.45

45We recognize that it is nearly impossible to provide results of parcel level land values aggregated to every geography a
reader might want to evaluate. Nonetheless, as part of this research, we are currently developing a "shiny app" that will
allow users to, on demand, aggregate the land values to numerous subnational levels of geography they prefer. Moreover,
this tool will allow for the user to examine a subset or even an individual state by county or census tract, for example, and
download the appropriate data. Note we do not plan to provide individual property values at this time due to potential
legal restrictions with the data; and, data limitations for some states, counties, tracts, etc. would also prevent estimates
for some subnational geographies. To be clear, the data repository we describe above would be an extension of this



33

In Table 4, we show our composite estimates for all residential land types by census division, as well
as agricultural land estimates by division. Recall that the primary difference in urban and dense urban
(as defined by the NLUD data we use) is that dense urban areas have smaller plots (<.1 acre), which
dominate sales of residential properties in dense cities.

Table 4. Division Residential and Agricultural Price-Per-Acre: Composite Values

Division 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Dense Urban

New England 4,390,728 4,064,087 3,782,702 3,568,738 3,532,994 3,739,399 4,214,188 4,830,544 5,264,961 5,583,918
Middle Atlantic 3,514,665 3,347,908 3,183,585 2,937,404 2,957,134 2,887,010 2,715,331 2,814,853 2,871,901 2,829,367
East North Central 1,901,898 1,765,491 1,579,959 1,363,429 1,268,454 1,078,910 951,014 996,262 1,153,150 1,197,307
West North Central 1,342,927 1,300,216 1,306,655 1,059,317 1,013,786 788,484 765,985 800,619 981,398 949,944
South Atlantic 2,698,156 2,629,256 2,044,937 1,519,384 1,377,169 1,120,682 1,113,927 1,234,078 1,288,969 1,461,937
East South Central 1,204,170 1,191,990 1,036,609 1,026,781 992,264 939,277 867,551 900,278 964,688 969,555
West South Central 619,508 728,811 604,254 707,326 675,782 604,476 636,644 567,717 522,754 557,946
Mountain 1,709,801 1,317,103 1,059,386 541,712 523,359 482,635 704,046 1,069,966 1,215,946 1,618,904
Pacific 4,878,001 4,430,268 3,255,403 2,534,171 2,551,315 2,267,257 2,142,890 2,947,532 3,654,961 3,966,805

Urban

New England 895,796 822,416 691,209 588,353 560,019 523,496 550,734 629,823 670,927 690,115
Middle Atlantic 740,863 700,978 658,297 609,182 629,507 599,269 575,881 595,190 635,986 649,422
East North Central 299,072 242,486 215,176 203,054 196,448 178,757 153,682 157,982 187,219 210,601
West North Central 490,972 455,156 390,404 328,442 336,871 268,539 271,378 309,871 384,791 382,061
South Atlantic 637,606 587,715 429,748 239,477 209,601 198,877 232,715 257,590 292,301 353,634
East South Central 226,738 235,269 209,574 195,602 194,201 191,165 188,252 196,666 211,082 236,268
West South Central 252,046 234,162 202,337 214,566 215,406 165,504 194,971 228,901 282,243 262,876
Mountain 472,937 454,159 438,306 264,313 291,133 366,627 437,811 469,693 525,665 609,871
Pacific 967,605 868,165 640,102 490,939 471,143 446,159 431,577 539,841 722,674 732,325

Rural

New England 39,289 36,233 32,715 28,245 27,917 24,185 23,325 22,100 23,067 23,979
Middle Atlantic 9,488 9,242 8,545 7,875 7,945 7,406 6,681 8,282 9,049 8,114
East North Central 8,173 6,363 5,932 4,965 4,526 4,605 5,482 6,563 7,536 7,870
West North Central 6,906 6,955 6,959 5,579 5,557 5,438 5,196 4,980 6,673 6,180
South Atlantic 16,062 14,718 14,108 12,312 11,499 10,529 10,647 9,879 10,272 11,352
East South Central 2,054 2,056 2,037 2,041 2,052 2,000 2,018 2,018 2,148 2,230
West South Central 3,258 3,200 3,177 3,192 3,175 3,134 3,256 3,371 3,640 3,745
Mountain 22,490 22,654 21,362 17,875 17,011 15,323 15,428 16,343 18,128 19,517
Pacific 28,777 30,414 25,703 21,761 19,235 18,719 17,035 19,144 21,834 24,224

Agricultural

New England 13,782 11,749 12,285 13,592 10,694 10,483 11,663 3,679 15,367 25,770
Middle Atlantic 4,594 4,938 5,673 4,930 4,625 4,576 4,481 4,455 4,627 4,480
East North Central 5,093 5,031 4,976 4,787 4,921 5,023 5,479 5,796 5,996 6,272
West North Central 4,360 4,387 4,764 4,504 4,426 4,402 5,565 5,220 5,608 5,320
South Atlantic 8,778 8,218 6,413 5,169 4,894 4,351 4,009 3,971 4,400 5,152
East South Central 2,899 2,759 2,649 2,469 2,328 2,276 2,417 2,380 2,452 2,832
West South Central 1,887 2,047 1,805 1,352 1,553 1,909 2,365 2,654 3,188 3,087
Mountain 5,404 7,009 5,723 4,248 3,220 3,137 3,438 3,446 3,291 3,986
Pacific 8,456 8,587 8,289 6,551 6,880 6,880 7,180 8,664 9,816 12,275

Note: For this table we have again summed the land values in a division and divided it by the sum of the acreages
in that division for a measure of price-per-acre. Single family residence value can be found in Table 3. All dollar
values are nominal USD.

research paper as experimental/developmental, and not an official statistical product of BEA. We intend to make this
available upon final publication of this paper.
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Not surprisingly, dense urban land is by far the most valuable land in terms of price-per-acre, which can
be as high as $4-5 million per acre in some divisions (New England and Pacific), but only a million or less
in other areas in the U.S. (like in the South). Urban land is substantially cheaper, as it is predominantly
sold on larger plots just outside the CBD of most cities (i.e., most often the areas between "the suburbs"
and "the city"), but its value generally falls between urban land and its suburban SFR alternative. While
their focus was only single-family residential property, a broader takeaway from these results is that they
conform to the general dynamic reported in Davis et al. (2021) and numerous other studies that show a
steep price gradient away from density. Moreover, rural residential property, which largely consists of
large parcels (>2.5 acres) and other rural land-use types (e.g., mobile/manufactured homes), is the
cheapest residential land type, conforming to this broader density story. But, it should be noted that
rural land is far closer in value to agricultural land than suburban SFR land, which is intuitive given the
location of rural and agricultural land more generally. In census divisions like New England, for example,
rural land is relatively expensive, given the density of the states is also relatively high; however, Table 4
also shows agricultural land is similarly high due to its high opportunity cost of being converted into
rural land. We do not see quite the same degree of this dynamic in the Pacific division, however, likely
do to different density and how much further away rural areas are from densely populated areas in the
American West as compared to the East Coast.

Table 5. Regional Non-Residential Price-Per-Acre: Composite Values

Division 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Industrial

New England 264,834 240,673 278,049 231,625 208,919 172,049 212,051 151,694 152,244 144,839
Middle Atlantic 287,901 313,559 333,352 284,977 283,289 285,061 284,502 264,872 314,253 387,342
East North Central 185,345 198,609 176,237 156,989 134,830 142,393 112,939 160,233 142,674 175,560
West North Central 194,129 210,856 184,506 151,394 157,154 136,883 128,426 158,893 181,290 150,434
South Atlantic 205,621 197,092 188,199 147,447 141,103 121,589 106,123 136,190 154,305 170,128
East South Central 49,286 67,664 68,699 67,002 67,097 77,079 76,464 44,352 54,124 64,464
West South Central 56,133 57,388 71,639 68,062 62,352 81,359 89,423 92,742 94,908 88,059
Mountain 253,935 280,651 308,962 221,715 231,193 253,301 270,693 278,862 346,988 372,977
Pacific 391,233 469,532 457,849 400,352 395,858 437,453 374,092 360,895 496,777 574,450

Commercial

New England 448,719 473,367 490,004 404,556 408,964 414,921 423,793 366,330 413,789 363,923
Middle Atlantic 628,399 786,175 698,084 614,971 571,250 617,417 597,235 589,558 652,674 721,703
East North Central 287,068 295,920 266,207 225,368 207,810 210,658 171,966 237,716 233,440 251,440
West North Central 374,195 392,757 297,098 236,333 245,726 220,230 212,644 219,386 266,732 270,761
South Atlantic 269,131 295,491 281,760 239,798 236,666 230,968 230,112 233,310 258,187 286,738
East South Central 92,578 96,044 96,954 82,869 84,121 88,687 105,229 109,732 117,065 152,510
West South Central 178,718 223,737 178,479 167,578 139,569 147,469 152,428 159,266 211,474 236,729
Mountain 774,877 838,801 798,861 659,530 559,095 530,936 512,820 588,706 665,155 764,276
Pacific 663,015 672,698 610,105 557,577 547,155 568,834 566,147 606,654 896,146 1,012,348

Note: For this table we have again summed the land values in a division and divided it by the sum of the acreages
in that division for a measure of price-per-acre. All dollar values are nominal USD.
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In Table 5 we report composite estimates for industrial and commercial land. While still showing some
pro-cyclical dynamics, compared to residential land values, our estimates of industrial and commercial
land values over this period are somewhat flatter over this decade. Commercial land is generally more
valuable than industrial land, which is likely due to a number of well-documented factors like differences
in location. For example, if commercial land is more likely to be located in more densely populated areas
near residential land, then we would expect land to reflect both this amenity value and opportunity cost.
However, we should again express some caution with our estimates of non-residential land, which are
derived from a coarser set of data. We return to this point in the Discussion section below.

5.2. National and census division results for all land types

The price estimates in the prior subsection provide important information about property markets over
this period; however, as a more general point, we should emphasize that prices tell only part of a larger
story. The national economic accounts aggregate economic activity by measuring national income and
expenditures in GDP, for example, which is the sum total of relevant prices and quantities. For the
national balance sheet (in the Integrated Macroeconomic Accounts), BEA and the Federal Reserve value
assets in these terms as well. Hence, we follow a similar approach by (Wentland et al., 2020) that uses
detailed land-use data to provide corresponding quantities of land for the contiguous United States to
construct a pilot accounting of private land as an asset. The National Land Use Database (NLUD)
provides a nearly exhaustive accounting of land use in the contiguous U.S., which leverages detailed data
from numerous sources to depict how land is used across the categories relevant for this study.46 One
drawback of this source is that the NLUD was initially developed for only a single year, 2010, which we
use here. Because land-use does not change particularly rapidly (e.g., once a property is built residential,
it generally stays that way for decades, given the relatively long lifespan of most structures), a snapshot of
land-use is sufficient for a proof-of-concept account; however, a regularly produced NLUD or equivalent
would be essential for production of an official account. We return to this point in the next section, as
we discuss how this data would need to be augmented or even replaced by official sources if BEA would
transition this proof-of-concept work into an official account.

Table 6 accounts for the total asset value of land by census division, land type, and year. Overall, private
land in the contiguous U.S. was worth a staggering 27.27 trillion nominal dollars in 2006. By 2011 this
had dropped by nearly 36% to 17.8 trillion dollars but largely had recovered by 2015 (24.1 trillion).47

Nearly 20% of the 2006 value was in single family housing alone; and, all residential (dense urban,
urban, single family/suburban, and rural) accounting for nearly 73% of the total land value in 2006. The
relative ordering of the asset values by region is as expected. The most valuable region, by aggregate
46The NLUD was derived from "two-dozen publicly-available, national spatial datasets – predominately based on census

housing, employment, and infrastructure, as well as land cover from satellite imagery... result[ing] in 79 land use classes"
Theobald (2014). In the online appendix (See Tables A1 through A4), we show how we collapsed the land-use categories
from the NLUD to the corresponding categories in ZTRAX’s land-use designations, directly following the classification
scheme in (Wentland et al., 2020).

47To calculate this we use our price-per-acre measure (the price) times the acreage (quantity) in that particular land group
as denoted by the 2010 figures from NLUD (see (Wentland et al., 2020) for a similar exercise).
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private land value, is the Pacific region, which includes California, Oregon, and Washington. This is
not surprising considering the well-documented evidence of high property prices in those states. The
least valuable region is the East South Central, which includes states such as Kentucky, Tennessee, and
Alabama. Though overall values are ordered as expected, there is significant heterogeneity between the
values of individual land types, some of which is driven by the relative size of that land type in the area.

Table 6. Land Value Totals by Division–part 1

NLUD 2010 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Pacific

Dense Urban 237 1,156 1,050 772 601 605 537 508 699 866 940
Urban 2,415 2,337 2,097 1,546 1,186 1,138 1,077 1,042 1,304 1,745 1,769
Suburban 1,629 1,481 1,804 1,266 1,053 1,083 1,013 1,039 1,316 1,526 1,766
Rural 9,893 285 301 254 215 190 185 169 189 216 240
Commercial 611 405 411 373 341 334 348 346 371 548 619
Industrial 261 102 123 119 104 103 114 98 94 130 150
Agricultural 78,480 664 674 651 514 540 540 563 680 770 963

Mountain

Dense Urban 81 138 107 86 44 42 39 57 87 98 131
Urban 1,383 654 628 606 366 403 507 605 650 727 843
Suburban 1,263 448 529 440 339 354 341 365 408 461 531
Rural 7,587 171 172 162 136 129 116 117 124 138 148
Commercial 521 404 437 416 344 291 277 267 307 347 398
Industrial 212 54 59 65 47 49 54 57 59 74 79
Agricultural 218,751 1,182 1,533 1,252 929 704 686 752 754 720 872

West North Central

Dense Urban 49 66 64 64 52 50 39 38 39 48 47
Urban 1,377 676 627 538 452 464 370 374 427 530 526
Suburban 1,246 290 286 243 230 216 214 225 229 247 *
Rural 11,073 76 77 77 62 62 60 58 55 74 68
Commercial 510 191 200 152 121 125 112 108 112 136 138
Industrial 268 52 57 49 41 42 37 34 43 49 40
Agricultural 269,990 1,177 1,184 1,286 1,216 1,195 1,188 1,502 1,409 1,514 1,436

East North Central

Dense Urban 148 281 261 234 202 188 160 141 147 171 177
Urban 2,872 859 696 618 583 564 513 441 454 538 605
Suburban 2,640 655 622 515 476 421 373 365 398 435 458
Rural 24,793 203 158 147 123 112 114 136 163 187 195
Commercial 715 205 212 190 161 149 151 123 170 167 180
Industrial 441 82 88 78 69 59 63 50 71 63 77
Agricultural 95,720 488 482 476 458 471 481 524 555 574 600

West South Central

Dense Urban 98 61 71 59 69 66 59 62 56 51 55
Urban 2,066 521 484 418 443 445 342 403 473 583 543
Suburban 2,318 102 109 108 97 93 93 71 73 72 84
Rural 22,875 75 73 73 73 73 72 74 77 83 86
Commercial 809 145 181 144 136 113 119 123 129 171 192
Industrial 388 22 22 28 26 24 32 35 36 37 34
Agricultural 207,344 391 424 374 280 322 396 490 550 661 640

Note: Acres are in thousands of acres. All dollar figures are in billions of nominal dollars.
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NLUD 2010 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

East South Central

Dense Urban 32 39 38 33 33 32 30 28 29 31 31
Urban 797 181 188 167 156 155 152 150 157 168 188
Suburban 1,810 110 105 94 96 141 171 163 169 177 *
Rural 29,328 60 60 60 60 60 59 59 59 63 65
Commercial 412 38 40 40 34 35 37 43 45 48 63
Industrial 240 12 16 16 16 16 18 18 11 13 15
Agricultural 64,973 188 179 172 160 151 148 157 155 159 184

South Atlantic

Dense Urban 210 567 552 429 319 289 235 234 259 271 307
Urban 3,049 1,944 1,792 1,310 730 639 606 710 785 891 1,078
Suburban 5,116 1,054 952 787 588 508 471 514 557 628 711
Rural 44,969 722 662 634 554 517 473 479 444 462 510
Commercial 886 238 262 250 212 210 205 204 207 229 254
Industrial 375 77 74 71 55 53 46 40 51 58 64
Agricultural 67,551 593 555 433 349 331 294 271 268 297 348

Middle Atlantic

Dense Urban 232 815 777 739 681 686 670 630 653 666 656
Urban 1,462 1,083 1,025 962 891 920 876 842 870 930 949
Suburban 2,171 792 778 724 666 635 572 549 547 557 577
Rural 19,415 184 179 166 153 154 144 130 161 176 158
Commercial 311 195 245 217 191 178 192 186 183 203 224
Industrial 151 43 47 50 43 43 43 43 40 47 58
Agricultural 21,632 99 107 123 107 100 99 97 96 100 97

New England

Dense Urban 61 268 248 231 218 216 228 257 295 321 341
Urban 669 599 550 462 394 375 350 368 421 449 462
Suburban 1,176 511 493 435 397 384 369 357 362 365 377
Rural 10,836 426 393 354 306 303 262 253 239 250 260
Commercial 196 88 93 96 79 80 81 83 72 81 71
Industrial 90 24 22 25 21 19 15 19 14 14 13
Agricultural 15,761 217 185 194 214 169 165 184 58 242 406

U.S. National Totals 1,264,975 27,265 26,919 23,154 19,313 18,617 17,834 18,431 19,913 22,653 24,099

Note: Acres are in thousands of acres. All dollar figures are in billions of nominal dollars.

A careful examination of the table will also reveal that, while it is officially the case that the [Great]
Recession ended in June of 2009 (as dated by the NBER), many regions did not experience the trough
until 2011-2013. To make the time-series dynamics clearer, we graph the total land asset value by each
division in Figure 6a, and in Figure 6b we provide a min-max transformation that better illustrates
peak-trough dynamics. A new insight from this account, which unlike (Wentland et al., 2020) provides
a yearly accounting of land value, is that the value of private land in the U.S. bottomed out over five
years, which varied regionally. All nine census divisions peaked in 2006 or 2007; yet, some experienced
the bottom of the trough in 2009, 2010, 2011, 2012, and even 2013. This is not immediately apparent
viewing pricing data alone, and one of the many more nuanced insights a national account can offer
by aggregating total value by the product of prices and quantities. Given that the U.S. had numerous
policies related to the bust in asset prices over this time period, the timing, absolute values, and regional
variation are all potentially highly relevant data points that could inform future policymakers if this type
of data were available going forward.
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Figure 6. U.S. Private Land Asset Value by Division

a. b.

Note: Here we have plotted the aggregate land value by division in Figure 6a. While the scale hides some of the
variation, especially in less expensive divisions, you can clearly see a procyclical pattern emerging. In Figure 6b we
transformed the value using a min-max transformation. This allows us to see the peak for each division (where the
max=1), as well as when each division experienced the trough (where min value=0).

6. Robustness to further out-of-sample testing: vacant land
comparison

Though they are not used for deriving the land value estimates reported above, the Ztrax data set
contains data on more than one million vacant residential land transactions over our sample period.
As a robustness check, we compare our land estimates for single-family residential property to nearby
sales of vacant land. However, we should express caution in such a comparison, given the previously
discussed selection bias issues with vacant land.48 With these limitations in mind we use the vacant
land transactions as an out-of-sample validation of our land estimates because, while imperfect, they are
actual transactions that take place in the marketplace.

So, while vacant land transactions may not be representative of all developed land, the aforementioned
selection issues should be mitigated in at least a couple circumstances. First, they should be more
representative of fair-market land value of property in the immediate, adjacent area than areas further
away. For instance, much of vacant land may be sold at the outskirts of developed areas; so, while
vacant land on the far reaches of the suburbs may not extrapolate well to developed land near the central
business district (CBD), it may proxy reasonably well for other nearby land at the outskirts. Second,
when there are periods of higher development and thus higher volume of vacant land sales in residential
developments, we should expect this higher volume to be more representative than periods when sales

48For example, a vacant plot may be smaller, more oddly shaped, or geographically/environmentally undesirable (e.g., it
could be the lowest elevation in the area and thus the most likely to flood). Second, despite their being over one million
transactions, these take place over the full time span of the data and across the entire geographical region examined. In
practice, for each state in each time period there is significantly less data from which we can compare.
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are scant. When these conditions are satisfied, we should observe more comparable developed land values
and vacant land values.

Thus, to generate a more apples-to-apples comparison of vacant land and nearby developed land, we use
the geolocation of a sold parcel we draw a circle with radius of one-tenth of a mile around the plot.49

For example, in Figure 7 we have plotted the assessment set first shown in Figure 2b. If this tract were
to have a vacant plot sold as indicated in Figure 7, then our donut would be as indicated. This polygon
would serve as our comparable area with respect to local geography. We exclude the first 1/100th of a
mile so as to avoid same year plot sales post development. This leaves us with a small donut shaped
polygon with total area of approximately 0.03 square-miles, or 19 square-acres. Using this polygon, we
identify properties nearby in our assessment set for which we have land estimates. If there were no
nearby properties we simply dropped that plot for the purposes of this exercise, keeping a small, yet more
comparable, subsample of the data for comparison.

Figure 7. Matching Vacant Land Plots to Nearby Developed Plots

Note: To match nearby developed plots with vacant land transactions we create a buffer of 0.10 miles with an
exclusion range of 0.01 miles. In some cases, such as those illustrated above, there may be many comparable
developed properties while in others there may be far fewer. Vacant land transactions are limited to those zoned for
single family residential use.

The end result is over half a million vacant land transactions across the 36 states examined. In Table 7
we have provided the number of vacant plots by year along with the median (observed) price and acreage
for those plots. Note that, while half a million vacant land transactions seems like a large sample at first
glance, the within-year number of transactions varies between 28, 000 and 67, 000. This could further be
broken down across the 36 states and should be apparent that, over time and geography this sample is
not very large. Using the donut buffer described above, each transacted vacant plot is matched to, on
average, forty nearby [developed] plots from the assessment set. 50

49We have also done this with larger radius circles but as the radius grows the likelihood of being near comparable plots of
land decreases since these are not walking distance radii but rather as the crow flies.

50This is not to say that every plot has many nearby matches; in fact, some vacant plots are only matched to a single nearby
developed plot within the geography we have outlined, and some have as many as 200 nearby comparisons.
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Table 7. Vacant Land Comparison by Year

Year Vacant Plots Median Price Median Acreage Nearby Price Nearby Acreage Nearby Plots

2004 48,750 50,000 0.38 52,569 0.36 40.21
2005 67,772 66,900 0.42 66,082 0.40 37.69
2006 54,022 65,000 0.46 69,181 0.43 40.40
2007 43,855 57,500 0.45 61,863 0.44 41.55
2008 33,212 44,803 0.42 49,515 0.41 42.42
2009 28,705 35,000 0.41 37,201 0.40 43.31
2010 29,968 30,000 0.43 35,654 0.41 42.55
2011 28,075 30,000 0.43 34,602 0.42 41.14
2012 32,838 30,000 0.43 36,357 0.41 41.15
2013 41,736 39,500 0.43 43,892 0.41 41.69
2014 50,145 47,500 0.42 51,857 0.40 42.09
2015 65,566 79,696 0.35 63,391 0.37 41.08

Note: The Ztrax dataset contains just over one million vacant land transactions for the 36 states examined. Here
we are comparing the median price of these vacant plots within each year to nearby [developed] plots from the
assessment set. The land prices used are the composite prices which are the weighted average of the hedonic
regression and machine learning predictions. Each vacant plot is matched to a developed plot within an interval
of (0.01, 0.10) miles from the vacant plot. The Nearby Plots column provides the average number of matches per
vacant plot. Note that vacant land transactions are not used in our estimation of the parcel level land values and
thus this is an out-of-sample comparison.

The summary statistics for this comparison show that developed plots tend to be slightly smaller in terms
of median acreage and – as expected if one were to think of possible selection bias in vacant land – the
median price for nearby plots is slightly higher. Note that we have restricted the conversation to our
composite estimate of the parcel-level land value, that is the weighted combination of land values from
the hedonic model and machine learning model as outlined in Equation 8. With a higher price and a
lower acreage, the overall price-per-acre for the developed plots is higher than that of the vacant land,
consistent with a selection bias argument. However, overall, the vacant land prices and the land prices
from the developed properties are in the same ballpark, giving us more confidence that our results are
not radically different than what we might observe in market transactions of land-alone.

Figure 8 shows that this comparison between our estimates and nearby vacant land sales is consistent
with the economic intuition outlined above. Vacant land transactions showed the least bias/error when
compared to our nearby valuations of developed land for all models during 2004-2006 (peaking in 2005).
This corresponded to the peak of the housing construction boom in the U.S. Indeed, over the entire
time-series, as we find a strong negative correlation between vacant land bias and new housing starts, a
key national indicator for residential construction/investment.51 Given the negative correlation, we graph

51This series is produced by Census and HUD, which can be found at: https://fred.stlouisfed.org/series/HOUST1F.

https://fred.stlouisfed.org/series/HOUST1F
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the inverse of New Housing Starts nationally on Figure 8, which shows that the series peaked in 2005,
collapsed through 2009, and stagnated through 2015. Thus, if our models are estimating the true market
value of this subset of land, this mirrored bias over the business cycle provides evidence consistent with
what we would expect. Taken together, the out-of-sample price validation for vacant land and property
sale prices of developed land provide robust evidence that our models, and the composite method in
particular, robustly track market values in line with the spirit SNA valuation principles for the national
accounts.52

Figure 8. Prediction Error for Vacant Land Mirrors New Housing Starts

Note: Here we have plotted the mean error for each year produced by comparing the observed vacant land sales
and the nearby land estimates using developed properties. The dashed line represents new housing starts (NHS)
through the transformation 1 − NHS/max(NHS) with peak new housing starts occurring in 2005. Orange squares
represent the error produced when comparing estimates from the linear hedonic model to vacant land prices while
blue triangles represent the error from gradient boosted trees. The grey circles represent the error produced by
an OLS weighted composite forecast between the two methods. The error of all three methods – linear hedonic,
gradient boosted trees, and composite – are all correlated with changes in new housing starts.

52Clapp and Lindenthal (2022) provide an additional test to compare models, which uses the land value as a determinant of
price. In untabulated tests we have found that our composite measure also performs well using their novel validation
approach; however, for brevity we omit the results and they are available upon request.
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7. Discussion
Though the main contribution of this paper is methodological, the estimates produced by the application
of this method to ZTRAX data demonstrate one way both ML methods and Big Data could come together
to produce a pilot national account for land value for the United States. However, we should reiterate
here that these estimates are not yet official statistics produced by BEA. Instead, these estimates provide
a proof-of-concept that are both illustrative from an academic standpoint and a practical standpoint.
For this to be an official account, a number of data limitations would need to be addressed, which we
discuss below.

The primary data limitation that would need to be addressed would be filling gaps in both the price and
quantity data. We have already mentioned ZTRAX’s chief limitation, which is that it does not include
sale price data for states whose local municipalities do not disclose final sale price data. And, in some
states where some municipalities do disclose this information, there is sufficient missing data that we
omit the states when we derive our estimates (e.g., Louisiana, Maine, and Vermont). An assumption
we make in our national and census division estimates above is that the omitted and missing states are
reasonably proxied by their neighboring states for the aggregate estimates; but, for some divisions this
assumption may strain credulity (e.g., the West South Central division missing Texas). Data outside the
ZTRAX dataset is available for purchase by various Big Data vendors, which include sale price data from
non-disclosure states that could potentially fill this gap.53

Although price data is available for Hawaii and Alaska, the NLUD does not yet include these states,
nor does it include the U.S. territories. BEA produces national economic accounts for all U.S. states
and territories, drawing on data sources that are representative of all localities. Future work would
need to update the NLUD to include these states/territories for a true national account. The United
States Geological Survey (USGS) is currently doing pioneering work on expanding the scope of land use
and land cover data in the U.S., including products by the Land Change Monitoring, Assessment, and
Projection (LCMAP) that account for land at fine levels of detail. Though they have not yet developed
a comparable land-use product, a regularly produced land-use product like the NLUD used in this study
would provide a tractable path forward for a comprehensive official national (and subnational) land
account.54

As an alternative approach to using a (not yet available) land-use data source, another potential path
forward would be to use the land leverage estimates produced in this study to apply to existing figures
in the national accounts for the asset value of real estate underlying structures. The current balance

53BEA has very recently purchased detailed data from another vendor, which has sale price data for the non-disclosure
states from non-municipal sources (like Multiple Listing Services), which we are currently exploring as an avenue to fill
this important gap and potentially update the estimates through 2022. Thus, the remedy for this limitation is on the
horizon, so-to-speak.

54See Wentland et al. (2020) for a discussion of a number of other challenges with using this data for land valuation,
including issues with dense urban and non-SFR properties in particular and the lack of detailed commercial/industrial
structure characteristics.

https://www.usgs.gov/special-topics/lcmap
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sheets produced by BEA and the Federal Reserve in the Integrated Macroeconomic Accounts provide
some aggregate figures for real estate, but the current configuration is not broken down precisely as
we have done in this paper. With some modifications, land leverage estimates derived from this study
could provide a breakout of land and structure value, limiting real estate value to the scope in which it is
currently measured. But, given the regional variation in land leverage we observe in the data, we are
reluctant to apply these leverages to national estimates as currently constituted on the balance sheet. A
key takeaway from our regional figures is that regional variation matters; and, leverage changes both
over time and across regions. A more accurate version of the land leverage approach would require use
of the subnational data from which the real estate values were constructed, which is data not available
to us currently. One advantage of the approach proposed in this paper is that it uses data sources that
the general public can also access, facilitating transparency in the national accounts. On the other side
of that coin, an alternative approach using internal data would not offer this benefit.

Finally, a key omitted land-use category is public lands, which, in the United States, are quite substantial
in terms of acreage. Depending on how one interprets who these assets belong to in an accounting
sense, it may not be necessary from the standpoint of the SNA to value these lands as an asset on the
balance sheet. However, much of these lands are used for purposes with private value (e.g., National
Parks that generate revenues, leased grazing lands, etc.) and play a role in our economy as measured by
GDP. From an environmental-economic accounting standpoint, these lands are in-scope of the accounts
as defined by SEEA-CF. Because our method relies on market prices to guide valuation, our approach
would likely need to be augmented (e.g., constraining the sample to lands adjacent to or around public
lands). But, this presents a number of conceptual and practical challenges that, in the interest of brevity,
we leave for future work to explore further. Nevertheless, the SNA prescribes cost-based methodologies
for accounting for government services in GDP, so having an alternative methodology for public sector
valuation is also a potential path forward for public lands.

8. Conclusion
In the 21st century, the increasing promulgation of large datasets (so-called Big Data) in combination
with more advanced methods (like ML) present an opportunity for national statistics offices to exploit new
ways to create more accurate, timely, and detailed estimates of products, services, and assets (Abraham
et al., 2019). To answer the call of this new era, we cultivate a new approach to land valuation that
leverages both Big Data and ML methods to provide new pilot estimates of private land value in the
contiguous U.S. for a decade (2006-2015). Our results underscore the potential importance of private
land as a quantitatively significant asset on our national balance sheet, as private land in the U.S. was
worth an estimated $24 trillion in 2015. Considering that U.S. net wealth in 2015 (Q4) was about
$81 trillion, this represents nearly 30% of net wealth assets as measured by the Financial Accounts of
the U.S..55 Another takeaway from our results in this paper is that the time-series dynamics of land
55As we alluded to in the prior section, comparisons with the balance sheet should be taken with a grain of salt. As it is

currently constructed, it is not necessarily apples-to-apples and has a variety of differences between what is currently
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value, while generally procyclical over this period, did not align precisely across the U.S.. In fact, while
land value reached its peak in 2006 or 2007 for each of the nine census divisions, there was substantial
regional variation in the timing of the trough. Regional bottoming out occurred as early as 2009 for
some census divisions and as late as 2013 for others. This highlights an important point for economic
policymakers and future researchers, that regional variation in land value differs substantially in both
severity and timing of peak-trough dynamics.

The approach we introduce in this paper opens the door to a host of new extensions. Methodologically,
our two-step ML approach, pairing kmeans clustering with gradient boosted trees (GBT), provides a
substantial increase in price prediction accuracy over traditional hedonic approaches in the vast majority
of circumstances. A key conclusion of this paper is that our model stacking approach, which produces
a composite land value based on a weighted combination of ML and hedonic models, outperforms
all models individually in terms of price prediction and other out-of-sample tests. Future work can
further augment these models, use additional data, and/or incorporate additional models in the stacking
procedure to improve the accuracy of these estimates even further.

In some ways, the potential uses and applications of this approach may also present a new frontier for
future work. Not only can future work build on these methods, but as we make our code available to
everyone, national statistical offices, academic researchers, professional appraisers, and others can take
this approach off the shelf to create micro or macro estimates. Whether users want to generate land
values, property values, and even borrow our clustering methods (to augment quasi-experimental research
designs in urban economics), the transparent methods we provide here may offer countless avenues
of new inquiry. In a new era where data is becoming increasingly plentiful, and accounting standards
have an increasing emphasis on accurate market values, having comparable and reliable methods may
facilitate a host of new applications. A goal of our research is to advance these ends, bridging the data
and methods of micro-research and macroeconomic accounts.

measured in the Financial Accounts and how we measure land in this paper. We use this net wealth figure purely for a
reference point and not to imply that this is part of an official estimate. The full time series for U.S. net wealth can be
found here: https://fred.stlouisfed.org/series/BOGZ1FL892090005Q.

https://fred.stlouisfed.org/series/BOGZ1FL892090005Q
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Appendices

A Appendix Figures

Figure A1: An Appraisal Report

Note: This figure is one example <https://www.thewendyslaughterteam.com/blog/appraisals by
a local Realtor in Columbia, MD describing the appraisal process to clients, which also includes
a useful visual of an appraisal report. Citation of this does not constitute BEA’s official
endorsement of a particular realtor or any information on their website for the general public.

https://www.thewendyslaughterteam.com/blog/appraisals


Figure A2: Forecast Combination Weights

(a)

(b)

Note: The composite forecasts are constructed using a linear regression (?). The densities in Figure A2a represent
the distribution of weights across the thirty-six states for each year and each estimate. Note that these weights do not
necessarily sum to one and as a result one can only examine the relative positions of the distributions. Figure A2b
outlines the distribution of intercepts (also known as the Bias Correction term) from the combination regressions.



B Appendix Tables

Table A1: Land Use/Type Cross-Walk from Zillow Data to National Land Use Database: Residential
Land Type NLUD Zillow
Dense Urban Residential Households - Dense Urban Dense Urban < 0.1 acres
Urban Residential Households - Urban Urban 0.1 to 1 acres

RI101 Duplex (2 Units, Any Combination)
RI102 Triplex (3 Units, Any Combination)
RI107 High-Rise Apartment
RI108 Boarding House Rooming House Apt Hotel Transient Lodging
RI112 Apartment (Generic)
RR104 Townhouse
RR105 Cluster Home
RR106 Condominium
RR107 Cooperative
RR108 Row House
RR114 Zero Lot Line
RR116 Patio Home
RR119 Garden Home
RR120 Landominium

Suburban Residential Households - Suburban These categories below 2.5 acres
RR000 Residential General
RR101 Single Family Residential
RR113 Bungalow
RR999 Inferred Single Family Residential

Rural Residential Households - Exurban/Rural These categories above 2.5 acres
RR000 Residential General
RR101 Single Family Residential
RR113 Bungalow
RR999 Inferred Single Family Residential

All in these Categories
RI109 Mobile Home Park, Trailer Park
RR102 Rural Residence
RR103 Mobile Home
RR115 Manufactured, Modular, Prefabricated Homes



Table A2: Land Use/Type Cross-Walk from Zillow Data to National Land Use Database: Commercial
Land Type NLUD Zillow
Commercial Offices - NAICS 51-56 CM000 Communication

Retail - NAICS 44-45 CM100 Cable Tv Station
CO101 Commercial/Office/Residential Mixed Used
CO102 Commercial/Industrial Mixed Use
CO103 Professional Building
CO104 Professional Building Multi-Story
CO105 Office Building
CO106 Office Building Multi-Story
CO107 Dental Building
CO108 Medical Building
CO109 Financial Building
CO110 Condominium Offices
CO111 Skyscraper, Highrise
CO112 Common Area - Commercial Office
CO113 Mobile Commercial Units
CR000 Commercial - General
CR101 Retail Store - General
CR102 Multi-Story Store
CR103 Store/Office (Mixed Use)
CR104 Department Store
CR105 Department Store Multi-Story
CR106 Mall, Shopping Center
CR107 Shopping Plaza, Mini-Mall
CR108 Neighborhood Shopping Center, Strip Mall, Enterprise Zone
CR109 Grocery, Supermarket
CR110 Veterinary, Animal Hospital
CR111 Restaurant
CR112 Fast Food, Drive Thru Restaurant
CR113 Take Out Restaurant (Fast Food)
CR114 Bakery
CR115 Bar, Tavern
CR116 Liquor Store
CR117 Convenience Store
CR118 Gas Station
CR119 Service Station - Full Service
CR120 Service Station With Convenience Store
CR121 Truck Stop
CR122 Vehicle Rentals And Vehicle Sales
CR123 Auto Repair, Garage
CR124 Car Wash
CR125 Dry Cleaner, Laundry
CR126 Service Shop
CR127 Florist, Nursery, Greenhouse
CR128 Wholesale Outlet, Discount Store
CR129 Printer - Retail
CR130 Mini-Warehouse, Storage
CR131 Day Care, Preschool
CR132 Hotel
CR133 Motel
CR134 Hotel/Motel
CR135 Hotel Resort
CR136 Casino
CR137 Parking Garage, Parking Structure
CR138 Parking Lot
CR139 Funeral Home, Mortuary
CR140 Stores & Apartments
CR141 Commercial Building, Mail Order, Show Room
CR142 Appliance Store
CR143 Kennel
CR144 Laundromat
CR145 Nightclub, Cocktail Lounge
CR146 Farm Supply & Equipment
CR147 Garden Center, Home Improvement
CR148 Commercial Condominium
CR149 Drug Store Pharmacy
CR150 Bed & Breakfast
CR151 Shopping Center Common Area



Table A3: Land Use/Type Cross-Walk from Zillow Data to National Land Use Database: Industrial
Land Type NLUD Zillow
Industrial Manufacturing NAICS 31-33 IH000 Industrial Heavy - General

IH101 Distribution Warehouse
IH102 Mining
IH103 Storage Yard
IH104 Distillery, Brewery, Bottling
IH105 Refinery, Petroleum Products
IH106 Mill
IH107 Factory
IH108 Processing Plant
IH109 Lumberyard, Building Materials
IH110 Shipyard, Storage
IH111 Slaughter House, Stockyard
IH112 Waste Disposal, Sewage
IH113 Quarries
IH114 Heavy Manufacturing
IH115 Labor Camp
IH116 Winery
IH117 Chemical Plant
IH118 Foundry, Industrial Plant
IH119 Cannery
IH120 Bulk Storage, Tanks
IH121 Grain Elevator
IH122 Dump Site
IH123 Cold Storage
IH124 Transportation - Industrial
IN000 Industrial - General
IN101 Manufacturing (Light)
IN102 Light Industrial
IN103 Warehouse
IN104 Storage Yard, Open Storage
IN105 Food Packing, Packing Plant
IN106 Assembly Plant
IN107 Food Processing
IN108 Recycling
IN109 Condominium (Industrial)
IN110 Laboratory, Research Facility, R&D Facility
IN111 Industrial Park
IN112 Multi-Tenant Industrial Building
IN113 Marine Facility, Boat Repairs
IN114 Lumber & Wood Products Mfg
IN115 Paper Product Mfg & Related Products
IN116 Printing & Publishing
IN117 Loft Building
IN118 Construction/Contracting Services
IN119 Common Area (Industrial)



Table A4: Land Use/Type Cross-Walk from Zillow Data to National Land Use Database: Agricultural
Land Type NLUD Zillow
Agricultural Farms NAICS 111 AG000 Agricultural General

Livestock NAICS 112 AG101 Farm (Irrigated Or Dry)
AG103 Poultry Farm
AG106 Crop Land, Field Crops, Row Crops
AG107 Orchard (Fruit, Nut)
AG108 Vineyard
AG113 Grove
AG116 Horticulture, Growing Houses, Ornamental
AG118 Truck Crops
AG121 Rural Improved, Nonresidential
VL108 Agricultural, Unimproved Vacant Land
AG102 Dairy Farm
AG104 Ranch
AG105 Range Land, Grazing Land
AG112 Pasture, Meadow
AG114 Feedlot
AG115 Livestock



Table A5: SFR Hedonic PPA
State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ALABAMA * * 81,145 70,003 66,155 64,506 68,231 70,732 66,343 68,727 68,265 67,693
ARIZONA 408,691 559,906 675,371 663,568 499,420 388,045 377,311 335,183 368,299 419,166 454,010 498,084
ARKANSAS 53,711 70,840 76,584 75,217 66,811 65,443 66,632 63,935 56,448 69,025 74,751 71,825
CALIFORNIA 1,427,330 1,693,454 1,750,386 1,582,709 1,152,677 1,012,939 1,078,160 1,014,426 1,046,745 1,263,332 1,424,628 1,566,155
COLORADO 467,510 499,986 524,712 520,410 465,900 419,160 405,335 382,996 410,481 454,694 513,269 594,851
CONNECTICUT 255,785 286,898 292,934 284,365 251,873 222,039 216,676 205,178 192,116 194,523 198,823 202,700
DELAWARE 302,464 358,669 406,319 579,020 655,571 487,704 353,364 293,044 278,752 311,813 331,246 355,215
FLORIDA 382,135 534,004 635,053 556,288 371,188 258,090 237,424 227,595 247,753 272,775 307,741 349,902
GEORGIA 117,902 129,248 147,531 160,833 136,371 109,756 96,426 82,725 82,970 96,991 117,200 124,427
ILLINOIS 517,304 575,268 618,059 595,587 489,142 375,687 343,480 296,543 280,049 306,452 336,061 359,358
IOWA 165,712 192,764 201,185 201,002 187,031 174,809 169,910 169,205 181,568 192,770 203,480 202,852
KENTUCKY 68,749 88,969 114,144 121,237 114,080 107,830 99,292 100,211 99,363 106,637 105,009 113,217
LOUISIANA * 157,871 94,553 210,330 227,466 194,504 165,925 238,384 85,451 59,157 54,575 51,486
MARYLAND 412,550 493,920 523,668 522,374 456,052 399,418 364,066 349,156 347,074 367,872 373,933 378,153
MASSACHUSETTS 396,001 428,886 410,096 382,781 333,137 309,563 309,303 290,254 278,710 285,533 273,918 280,705
MICHIGAN 272,053 285,355 260,628 214,752 153,194 136,196 147,562 129,011 121,947 183,595 186,331 162,515
MINNESOTA 321,622 343,015 337,334 323,642 274,668 250,277 248,031 224,346 228,445 239,830 252,739 268,372
MISSOURI 166,865 156,795 163,716 151,356 137,941 130,789 134,158 128,007 132,952 126,155 127,884 94,930
NEBRASKA 223,528 182,395 108,675 134,651 139,022 171,585 178,657 184,654 201,598 213,492 217,493 220,120
NEVADA 864,128 1,108,222 1,026,636 916,743 656,646 501,520 489,744 777,959 729,349 605,525 656,970 671,144
NEW HAMPSHIRE 154,273 170,762 171,357 163,730 140,538 125,291 124,920 119,570 120,521 122,379 125,338 137,679
NEW JERSEY 678,413 779,433 798,584 757,769 660,444 592,715 579,159 549,434 519,634 522,866 541,676 563,105
NEW YORK 369,964 404,805 431,584 420,692 397,469 360,902 357,155 332,303 337,231 334,741 335,624 354,874
NORTH CAROLINA 98,499 127,546 143,645 153,393 142,063 126,095 113,383 108,189 109,014 117,025 122,715 128,935
OHIO 163,515 171,628 166,342 151,352 126,940 120,268 116,754 105,945 103,483 107,060 115,188 117,437
OKLAHOMA 86,562 124,742 137,983 148,005 148,288 143,102 129,518 126,230 135,857 138,533 154,334 151,597
OREGON 352,630 430,514 509,560 532,297 491,316 421,623 396,635 370,879 378,430 417,246 445,272 491,243
PENNSYLVANIA 232,214 260,847 270,447 274,860 258,981 274,839 278,605 266,717 256,257 253,086 246,373 265,201
RHODE ISLAND 401,359 452,339 453,091 419,841 352,713 304,309 294,718 313,928 398,144 373,997 324,647 338,271
SOUTH CAROLINA 148,637 145,798 137,861 138,914 123,016 104,229 85,976 73,193 83,663 100,716 106,243 107,300
SOUTH DAKOTA * 34,078 143,929 619,647 265,440 338,285 163,644 247,906 209,452 254,624 239,685 *
TENNESSEE 90,830 103,637 110,983 112,424 101,351 89,948 80,869 74,131 72,788 78,812 90,831 98,966
VIRGINIA 208,785 226,441 277,421 250,216 219,136 194,006 194,037 182,780 183,984 191,064 190,268 197,818
WASHINGTON 390,682 468,595 548,277 563,684 510,312 440,485 420,277 379,160 380,311 401,298 434,652 472,820
WEST VIRGINIA 51,910 78,149 88,976 94,833 86,707 86,795 85,919 86,397 83,923 85,416 81,917 93,033
WISCONSIN 454,765 413,963 420,630 416,844 376,477 337,544 322,717 296,097 296,807 303,724 312,005 310,286



Table A6: SFR Hedonic Leverage
State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ALABAMA * * 0.53 0.41 0.38 0.40 0.40 0.45 0.40 0.41 0.40 0.39
ARIZONA 0.53 0.55 0.56 0.58 0.58 0.58 0.57 0.56 0.54 0.53 0.54 0.56
ARKANSAS 0.45 0.57 0.54 0.50 0.47 0.51 0.49 0.49 0.48 0.51 0.51 0.44
CALIFORNIA 0.65 0.65 0.65 0.65 0.63 0.62 0.62 0.60 0.59 0.59 0.60 0.61
COLORADO 0.59 0.58 0.57 0.56 0.54 0.51 0.49 0.49 0.50 0.50 0.51 0.53
CONNECTICUT 0.52 0.52 0.51 0.50 0.49 0.48 0.47 0.46 0.44 0.44 0.44 0.45
DELAWARE 0.54 0.58 0.55 0.60 0.61 0.69 0.59 0.55 0.53 0.55 0.56 0.58
FLORIDA 0.53 0.56 0.59 0.58 0.53 0.49 0.49 0.48 0.47 0.48 0.49 0.51
GEORGIA 0.49 0.49 0.50 0.52 0.50 0.46 0.43 0.42 0.41 0.42 0.45 0.45
ILLINOIS 0.56 0.57 0.58 0.56 0.53 0.49 0.44 0.41 0.40 0.40 0.41 0.42
IOWA 0.55 0.56 0.56 0.55 0.52 0.50 0.48 0.48 0.49 0.50 0.49 0.46
KENTUCKY 0.31 0.36 0.40 0.43 0.43 0.42 0.39 0.39 0.38 0.39 0.37 0.37
LOUISIANA * 1.07 0.63 1.35 1.26 1.17 1.08 1.58 0.57 0.38 0.34 0.31
MARYLAND 0.61 0.61 0.60 0.60 0.59 0.58 0.57 0.56 0.55 0.54 0.54 0.54
MASSACHUSETTS 0.55 0.56 0.55 0.53 0.52 0.51 0.51 0.50 0.49 0.47 0.54 0.57
MICHIGAN 0.66 0.66 0.62 0.58 0.54 0.51 0.48 0.45 0.47 0.48 0.45 0.43
MINNESOTA 0.54 0.54 0.52 0.51 0.51 0.51 0.49 0.48 0.46 0.44 0.44 0.45
MISSOURI 0.51 0.45 0.48 0.45 0.44 0.43 0.43 0.43 0.42 0.41 0.41 0.35
NEBRASKA 0.58 0.45 0.33 0.39 0.40 0.42 0.45 0.47 0.49 0.49 0.47 0.46
NEVADA 0.65 0.69 0.61 0.61 0.60 0.61 0.60 1.05 0.97 0.65 0.62 0.60
NEW HAMPSHIRE 0.51 0.53 0.54 0.53 0.51 0.51 0.51 0.51 0.49 0.48 0.47 0.48
NEW JERSEY 0.66 0.66 0.65 0.64 0.62 0.62 0.62 0.62 0.59 0.57 0.58 0.58
NEW YORK 0.61 0.60 0.60 0.59 0.59 0.56 0.58 0.55 0.55 0.53 0.52 0.53
NORTH CAROLINA 0.40 0.46 0.48 0.48 0.46 0.44 0.41 0.41 0.41 0.42 0.42 0.42
OHIO 0.58 0.59 0.57 0.56 0.53 0.51 0.48 0.47 0.45 0.43 0.43 0.41
OKLAHOMA 0.38 0.48 0.50 0.52 0.52 0.50 0.47 0.46 0.49 0.48 0.48 0.46
OREGON 0.57 0.59 0.59 0.60 0.60 0.59 0.59 0.59 0.58 0.57 0.56 0.57
PENNSYLVANIA 0.58 0.60 0.59 0.59 0.58 0.59 0.59 0.58 0.55 0.54 0.53 0.52
RHODE ISLAND 0.57 0.58 0.59 0.58 0.56 0.55 0.54 0.57 0.55 0.52 0.50 0.52
SOUTH CAROLINA 0.64 0.55 0.49 0.47 0.45 0.41 0.36 0.32 0.35 0.40 0.39 0.35
SOUTH DAKOTA * 0.05 0.25 1.61 0.36 0.61 0.46 0.68 0.52 0.55 0.53 *
TENNESSEE 0.52 0.53 0.52 0.51 0.49 0.46 0.44 0.42 0.41 0.42 0.45 0.44
VIRGINIA 0.50 0.47 0.48 0.45 0.47 0.43 0.46 0.44 0.42 0.42 0.41 0.41
WASHINGTON 0.58 0.59 0.60 0.57 0.56 0.55 0.56 0.54 0.53 0.52 0.52 0.51
WEST VIRGINIA 0.31 0.44 0.47 0.47 0.44 0.43 0.43 0.43 0.40 0.40 0.38 0.39
WISCONSIN 0.80 0.68 0.67 0.66 0.64 0.62 0.58 0.57 0.57 0.55 0.54 0.52



Table A7: SFR Gradient Boosted Trees PPA
State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ALABAMA * * 56,484 56,280 34,582 48,006 23,951 22,560 30,909 31,998 31,793 33,240
ARIZONA 219,785 317,626 396,083 375,746 314,277 210,375 190,772 153,196 164,563 202,408 223,137 269,972
ARKANSAS 26,069 32,261 37,239 39,716 36,305 33,261 30,144 31,085 25,162 23,374 23,410 28,498
CALIFORNIA 1,006,465 1,272,812 1,347,152 1,354,420 884,524 670,368 646,596 606,630 629,205 839,324 1,026,151 1,269,754
COLORADO 418,321 434,077 429,257 426,251 375,913 343,969 339,595 331,934 370,004 441,379 500,840 589,530
CONNECTICUT 370,744 417,398 429,574 423,713 408,184 374,868 370,592 356,642 344,567 346,096 336,944 337,261
DELAWARE 334,867 354,329 408,923 363,920 416,190 367,869 373,594 305,147 304,778 283,751 286,875 328,798
FLORIDA 231,004 309,882 359,730 313,368 257,718 154,426 109,158 90,807 109,632 118,862 145,098 168,592
GEORGIA 97,957 101,032 103,112 93,136 89,211 72,940 71,749 50,429 45,589 47,339 57,288 66,562
ILLINOIS 514,255 571,467 582,597 574,614 445,590 397,467 347,371 295,977 309,456 328,636 365,859 407,688
IOWA 152,599 161,041 154,946 162,042 157,120 148,236 162,605 158,207 170,314 170,293 175,920 194,096
KENTUCKY 103,796 104,609 107,244 101,566 100,141 102,067 92,360 82,522 75,961 72,672 80,621 98,026
LOUISIANA 16,546 22,291 25,927 30,097 30,540 32,672 28,761 25,207 19,503 17,185 14,054 25,309
MARYLAND 314,788 388,217 441,279 447,411 392,989 350,792 319,299 303,231 300,150 318,320 335,728 350,803
MASSACHUSETTS 531,135 568,347 559,391 537,515 478,558 460,130 451,219 437,531 404,840 396,041 408,056 433,881
MICHIGAN 177,761 185,583 189,738 175,339 149,494 122,459 121,105 110,502 95,429 112,777 122,473 124,122
MINNESOTA 422,550 440,473 458,125 427,406 349,637 317,973 300,432 306,983 314,840 327,213 378,603 400,675
MISSOURI 130,178 129,298 141,194 136,207 117,499 132,249 131,036 110,022 115,382 105,080 105,148 94,469
NEBRASKA 155,241 166,413 173,392 188,272 189,172 177,991 154,161 151,663 150,178 167,658 169,702 196,067
NEVADA 524,129 527,216 550,896 519,001 417,672 251,211 246,915 193,089 175,380 191,574 256,022 349,502
NEW HAMPSHIRE 204,700 221,766 225,495 218,730 187,897 170,220 167,235 162,815 167,848 175,529 179,010 196,971
NEW JERSEY 441,342 512,948 517,143 510,772 454,010 417,341 377,489 321,505 305,530 290,884 310,328 318,734
NEW YORK 314,593 363,681 369,319 363,071 336,830 301,293 289,743 274,879 276,631 286,308 290,178 301,600
NORTH CAROLINA 55,285 78,744 81,257 78,353 79,213 78,239 73,081 70,682 67,771 71,043 68,106 67,754
OHIO 128,903 125,246 120,475 113,042 100,643 114,955 89,591 87,495 83,048 86,006 89,319 91,591
OKLAHOMA 40,169 49,310 55,152 54,229 57,348 50,774 51,689 50,301 39,336 44,700 41,873 40,094
OREGON 388,630 448,893 508,916 540,270 507,531 469,350 401,046 363,800 378,466 417,933 470,789 545,782
PENNSYLVANIA 199,891 196,697 196,168 199,321 205,547 196,071 189,161 168,516 154,947 150,758 149,854 157,569
RHODE ISLAND 472,945 500,675 504,565 495,447 417,483 340,277 338,997 295,928 296,783 319,705 332,708 368,920
SOUTH CAROLINA 71,328 73,778 73,615 81,560 74,843 75,471 62,971 57,657 60,018 66,848 77,328 89,931
SOUTH DAKOTA * 211,632 195,697 238,123 346,192 382,554 330,457 255,626 220,869 200,598 212,099 204,793
TENNESSEE 41,179 41,968 45,501 43,262 43,985 42,390 40,268 41,303 38,175 32,419 34,200 42,576
VIRGINIA 233,034 291,155 309,182 288,419 217,415 210,094 209,314 206,535 226,709 225,156 241,661 258,251
WASHINGTON 369,932 401,446 474,363 496,362 466,983 428,962 417,651 354,171 357,112 408,279 423,960 476,628
WEST VIRGINIA 90,045 94,622 90,134 86,067 84,934 94,294 85,666 81,125 69,867 77,298 72,864 94,817
WISCONSIN 297,552 348,698 365,351 355,691 341,537 325,803 305,931 285,182 268,984 280,443 317,212 325,718



Table A8: SFR Gradient Boosted Trees Leverage
State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ALABAMA * * 0.36 0.34 0.21 0.31 0.15 0.15 0.20 0.21 0.20 0.20
ARIZONA 0.29 0.32 0.35 0.35 0.37 0.31 0.29 0.25 0.25 0.26 0.27 0.31
ARKANSAS 0.23 0.27 0.29 0.29 0.27 0.27 0.24 0.25 0.20 0.18 0.18 0.20
CALIFORNIA 0.47 0.50 0.51 0.54 0.46 0.40 0.37 0.36 0.36 0.40 0.43 0.49
COLORADO 0.53 0.52 0.49 0.48 0.45 0.43 0.42 0.43 0.45 0.49 0.51 0.54
CONNECTICUT 0.78 0.79 0.79 0.78 0.79 0.80 0.79 0.79 0.78 0.78 0.76 0.76
DELAWARE 0.58 0.63 0.69 0.61 0.66 0.64 0.63 0.58 0.59 0.52 0.51 0.57
FLORIDA 0.37 0.38 0.39 0.36 0.37 0.29 0.22 0.19 0.22 0.21 0.24 0.25
GEORGIA 0.41 0.39 0.37 0.33 0.34 0.31 0.33 0.25 0.23 0.22 0.24 0.26
ILLINOIS 0.56 0.57 0.55 0.54 0.47 0.50 0.45 0.42 0.45 0.44 0.46 0.50
IOWA 0.49 0.49 0.45 0.46 0.44 0.41 0.45 0.44 0.46 0.44 0.44 0.46
KENTUCKY 0.42 0.42 0.40 0.37 0.37 0.39 0.35 0.32 0.29 0.27 0.29 0.34
LOUISIANA 0.13 0.17 0.20 0.21 0.20 0.22 0.20 0.17 0.14 0.12 0.09 0.16
MARYLAND 0.50 0.50 0.53 0.53 0.52 0.52 0.50 0.48 0.48 0.48 0.50 0.52
MASSACHUSETTS 0.77 0.77 0.76 0.75 0.73 0.75 0.73 0.73 0.76 0.75 0.78 0.84
MICHIGAN 0.44 0.44 0.46 0.47 0.48 0.46 0.45 0.42 0.37 0.37 0.37 0.35
MINNESOTA 0.72 0.71 0.72 0.69 0.64 0.66 0.62 0.67 0.65 0.63 0.69 0.69
MISSOURI 0.37 0.36 0.39 0.38 0.35 0.41 0.41 0.37 0.38 0.34 0.34 0.37
NEBRASKA 0.41 0.42 0.47 0.50 0.50 0.44 0.38 0.38 0.36 0.39 0.37 0.40
NEVADA 0.38 0.35 0.34 0.35 0.39 0.30 0.30 0.26 0.23 0.21 0.25 0.32
NEW HAMPSHIRE 0.69 0.69 0.70 0.70 0.66 0.66 0.65 0.66 0.66 0.67 0.65 0.67
NEW JERSEY 0.45 0.46 0.44 0.44 0.42 0.43 0.40 0.36 0.35 0.32 0.33 0.33
NEW YORK 0.55 0.57 0.55 0.54 0.52 0.50 0.49 0.47 0.48 0.48 0.47 0.47
NORTH CAROLINA 0.22 0.29 0.28 0.25 0.26 0.27 0.26 0.26 0.25 0.25 0.24 0.22
OHIO 0.46 0.43 0.41 0.41 0.41 0.49 0.38 0.39 0.36 0.36 0.34 0.34
OKLAHOMA 0.17 0.20 0.21 0.20 0.21 0.18 0.19 0.18 0.14 0.15 0.14 0.13
OREGON 0.63 0.62 0.60 0.61 0.61 0.65 0.58 0.57 0.58 0.57 0.60 0.64
PENNSYLVANIA 0.53 0.48 0.45 0.46 0.49 0.48 0.48 0.44 0.41 0.39 0.39 0.39
RHODE ISLAND 0.68 0.65 0.66 0.67 0.65 0.60 0.60 0.56 0.55 0.57 0.57 0.62
SOUTH CAROLINA 0.33 0.31 0.28 0.28 0.27 0.30 0.27 0.25 0.26 0.27 0.30 0.32
SOUTH DAKOTA * 0.76 0.56 0.72 0.56 0.81 0.85 0.64 0.54 0.46 0.47 0.48
TENNESSEE 0.26 0.24 0.24 0.21 0.23 0.23 0.22 0.23 0.22 0.18 0.17 0.20
VIRGINIA 0.50 0.51 0.50 0.49 0.43 0.44 0.44 0.43 0.47 0.44 0.45 0.47
WASHINGTON 0.53 0.51 0.52 0.51 0.52 0.54 0.55 0.50 0.49 0.52 0.50 0.51
WEST VIRGINIA 0.54 0.51 0.45 0.42 0.42 0.48 0.43 0.41 0.34 0.37 0.34 0.40
WISCONSIN 0.52 0.58 0.59 0.57 0.58 0.59 0.55 0.55 0.52 0.52 0.57 0.56



Table A9: SFR Composite PPA
State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ALABAMA * * 60,929 55,720 36,273 53,298 75,873 77,938 84,861 36,362 47,219 38,414
ARIZONA 228,217 331,032 411,516 368,358 316,585 226,639 227,422 186,999 197,397 233,022 263,210 315,110
ARKANSAS 26,346 26,885 34,407 35,471 36,821 29,689 27,108 31,042 26,729 21,031 30,254 36,023
CALIFORNIA 1,184,669 1,438,573 1,507,175 1,386,489 985,337 849,578 807,863 759,658 803,926 1,032,300 1,178,791 1,387,070
COLORADO 408,754 420,514 406,977 384,555 371,261 352,200 355,826 311,667 373,668 430,873 491,569 566,871
CONNECTICUT 333,619 395,633 397,627 396,876 338,856 313,040 308,960 295,983 286,843 285,047 269,245 271,107
DELAWARE 331,627 361,912 418,082 388,550 422,770 374,845 358,901 295,502 293,799 293,934 294,091 329,541
FLORIDA 241,452 328,764 378,543 305,380 240,764 157,704 116,321 107,381 124,645 143,719 171,918 208,132
GEORGIA 98,216 98,961 104,406 91,977 83,521 66,419 70,317 49,267 45,863 56,943 67,364 73,801
ILLINOIS 501,630 559,019 575,152 561,458 429,694 362,438 323,338 264,989 281,725 306,886 337,145 392,263
IOWA 157,556 166,659 160,059 162,720 156,353 142,264 151,172 149,287 168,237 167,220 178,977 189,588
KENTUCKY 87,401 98,102 106,698 105,963 100,522 93,602 90,042 77,144 75,571 77,941 87,778 95,576
LOUISIANA 40,733 51,029 44,648 48,899 64,177 58,996 33,700 46,521 34,521 29,926 18,702 35,784
MARYLAND 324,800 399,372 449,247 453,676 381,886 338,240 312,136 296,677 304,240 323,168 339,880 359,340
MASSACHUSETTS 493,461 530,764 514,477 480,125 407,303 391,575 389,028 375,857 359,561 376,599 353,205 332,201
MICHIGAN 192,004 202,484 202,104 182,278 147,803 121,226 124,158 108,672 98,819 117,499 127,528 137,790
MINNESOTA 384,061 416,438 441,364 404,393 308,025 283,911 278,525 283,336 293,370 300,406 330,845 349,604
MISSOURI 131,421 131,613 143,270 133,478 111,274 125,441 124,977 106,219 113,631 108,460 106,567 94,753
NEBRASKA 161,575 167,933 185,819 197,032 180,384 175,386 149,104 143,419 151,437 179,690 176,638 201,009
NEVADA 560,222 560,165 561,788 516,079 431,006 282,536 295,921 311,878 262,091 298,337 293,738 418,029
NEW HAMPSHIRE 197,824 216,644 216,243 209,022 175,109 160,246 157,630 154,139 164,009 163,673 171,267 190,057
NEW JERSEY 494,618 568,862 570,781 544,335 493,339 474,865 442,251 374,403 371,968 385,923 393,278 422,408
NEW YORK 331,898 373,031 384,722 378,042 348,119 314,085 310,656 290,361 288,825 296,897 291,753 305,767
NORTH CAROLINA 53,121 72,056 80,588 79,762 78,677 75,103 71,943 68,234 63,230 70,373 71,758 78,799
OHIO 126,818 126,519 121,122 110,316 99,685 110,040 89,367 84,230 81,392 85,838 94,103 98,921
OKLAHOMA 42,123 53,111 58,969 55,334 54,878 48,432 56,169 45,711 38,625 49,553 42,879 49,872
OREGON 379,587 442,266 498,927 530,785 498,898 441,735 382,248 344,770 367,993 418,511 461,563 527,609
PENNSYLVANIA 203,225 207,614 209,254 213,232 214,275 209,644 197,310 178,461 170,309 162,025 163,425 173,156
RHODE ISLAND 453,404 485,528 477,605 475,969 391,739 326,538 324,552 291,998 302,587 330,743 327,780 357,432
SOUTH CAROLINA 73,400 73,263 74,051 84,609 73,873 74,460 67,809 50,294 56,110 69,231 81,139 93,909
SOUTH DAKOTA * 205,135 286,967 393,343 404,694 353,815 246,685 274,303 196,267 227,255 215,336 *
TENNESSEE 41,408 41,294 47,432 43,586 42,191 40,786 37,456 38,182 37,500 34,736 39,103 47,093
VIRGINIA 232,030 284,958 310,241 289,286 210,871 193,826 195,578 186,641 217,645 216,774 229,766 238,697
WASHINGTON 368,814 406,387 484,769 499,625 461,810 418,313 407,968 345,276 340,981 400,985 425,391 474,704
WEST VIRGINIA 76,549 86,536 93,909 89,838 93,018 90,892 85,102 76,582 68,373 81,934 81,956 113,045
WISCONSIN 319,428 349,045 367,688 350,328 330,541 319,558 302,978 270,193 268,171 281,185 313,683 319,662



Table A10: SFR Composite Leverage
State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
ALABAMA * * 0.39 0.34 0.22 0.36 0.49 0.55 0.54 0.24 0.29 0.23
ARIZONA 0.30 0.33 0.36 0.34 0.37 0.33 0.34 0.31 0.29 0.30 0.32 0.36
ARKANSAS 0.24 0.24 0.27 0.26 0.28 0.24 0.22 0.25 0.22 0.17 0.23 0.25
CALIFORNIA 0.54 0.56 0.56 0.55 0.51 0.49 0.45 0.45 0.45 0.48 0.49 0.53
COLORADO 0.51 0.50 0.46 0.43 0.44 0.44 0.45 0.40 0.46 0.48 0.50 0.52
CONNECTICUT 0.70 0.74 0.72 0.72 0.66 0.67 0.66 0.66 0.66 0.65 0.61 0.60
DELAWARE 0.58 0.64 0.68 0.65 0.68 0.66 0.60 0.57 0.56 0.53 0.51 0.57
FLORIDA 0.38 0.40 0.41 0.35 0.35 0.30 0.23 0.23 0.24 0.25 0.28 0.31
GEORGIA 0.41 0.38 0.37 0.32 0.32 0.29 0.32 0.25 0.23 0.26 0.28 0.29
ILLINOIS 0.55 0.56 0.55 0.53 0.46 0.46 0.43 0.38 0.41 0.41 0.42 0.48
IOWA 0.50 0.50 0.46 0.46 0.44 0.41 0.42 0.42 0.46 0.43 0.45 0.44
KENTUCKY 0.36 0.40 0.39 0.39 0.38 0.37 0.35 0.30 0.29 0.29 0.31 0.33
LOUISIANA 0.01 0.39 0.33 0.34 0.42 0.39 0.23 0.32 0.24 0.20 0.12 0.21
MARYLAND 0.51 0.52 0.53 0.53 0.51 0.51 0.48 0.48 0.49 0.49 0.51 0.53
MASSACHUSETTS 0.71 0.71 0.70 0.68 0.62 0.64 0.64 0.63 0.68 0.74 0.69 0.67
MICHIGAN 0.47 0.48 0.49 0.49 0.48 0.46 0.46 0.42 0.38 0.38 0.38 0.39
MINNESOTA 0.66 0.66 0.70 0.66 0.57 0.58 0.57 0.62 0.61 0.57 0.60 0.60
MISSOURI 0.37 0.37 0.40 0.38 0.34 0.40 0.40 0.36 0.37 0.36 0.34 0.37
NEBRASKA 0.42 0.42 0.50 0.52 0.48 0.43 0.37 0.36 0.36 0.41 0.38 0.42
NEVADA 0.41 0.37 0.35 0.35 0.40 0.34 0.36 0.42 0.35 0.33 0.29 0.38
NEW HAMPSHIRE 0.67 0.67 0.67 0.67 0.62 0.62 0.62 0.63 0.65 0.62 0.62 0.65
NEW JERSEY 0.50 0.50 0.49 0.47 0.46 0.49 0.47 0.42 0.43 0.43 0.42 0.44
NEW YORK 0.58 0.58 0.57 0.56 0.55 0.53 0.53 0.50 0.50 0.50 0.47 0.48
NORTH CAROLINA 0.21 0.27 0.27 0.25 0.26 0.26 0.26 0.26 0.24 0.25 0.25 0.26
OHIO 0.45 0.43 0.42 0.40 0.40 0.47 0.38 0.37 0.35 0.36 0.36 0.36
OKLAHOMA 0.18 0.22 0.23 0.20 0.20 0.17 0.20 0.17 0.14 0.17 0.14 0.16
OREGON 0.61 0.60 0.58 0.59 0.60 0.61 0.55 0.54 0.56 0.57 0.58 0.61
PENNSYLVANIA 0.54 0.50 0.48 0.49 0.51 0.52 0.51 0.47 0.45 0.42 0.42 0.43
RHODE ISLAND 0.65 0.63 0.63 0.65 0.60 0.58 0.58 0.57 0.56 0.59 0.55 0.58
SOUTH CAROLINA 0.34 0.31 0.28 0.29 0.27 0.30 0.29 0.22 0.25 0.28 0.31 0.33
SOUTH DAKOTA * 0.68 0.95 1.13 0.20 0.81 0.69 0.68 0.49 0.52 0.48 *
TENNESSEE 0.26 0.23 0.25 0.21 0.22 0.22 0.21 0.22 0.21 0.19 0.20 0.22
VIRGINIA 0.50 0.51 0.51 0.50 0.42 0.41 0.42 0.41 0.46 0.43 0.44 0.45
WASHINGTON 0.53 0.51 0.52 0.51 0.52 0.53 0.54 0.49 0.47 0.51 0.50 0.50
WEST VIRGINIA 0.46 0.49 0.47 0.43 0.45 0.46 0.42 0.39 0.33 0.39 0.38 0.47
WISCONSIN 0.56 0.58 0.59 0.56 0.56 0.58 0.55 0.52 0.52 0.52 0.56 0.55
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