The Effect of the Business Cycle on the Methods Used for Seasonal Adjustment

Brent R. Moulton (prepared by Ryan Greenaway-McGrevy)
OECD Working Party on National Accounts
Paris
October 4–5, 2012
Why Seasonally Adjust?

- Many economic time series exhibit seasonal patterns related to weather, holidays, school schedules, etc.

- Because recurring seasonal patterns are of relatively little interest to data users, it is desirable to seasonally adjust quarterly/monthly data to abstract from seasonal effects (*SNA 2008, 18.37*)

- Better view underlying movements
 - Cycles and trends
 - Identify direction and turning points
Overview – Problem

- Standard seasonal adjustment methods:
 - Seasonal factors extracted from single time series
 - Decomposition into trend, seasonal, & irregular components

- Difficult to accommodate abrupt change in trend
 - Trend estimated by smoothing
 - Sharp fall in 2008:Q4 and 2009:Q1 interpreted as change in seasonal patterns
 - Seasonally adjusted data are then
 - artificially strong in Q4 and Q1
 - artificially weak in Q2 and Q3
Overview – Potential Solutions

- Traditional approach – “interventions”:
 - outliers, ramps, different trend estimators

- Alternative approach – Multiple time series
 - Trend extracted from \(n \) related time series
 - Trend is less smooth
 - Apart from this, the approach follows X-12
 - More timely and less need for diagnostics and interventions in response to level shift
 - Judgment still required to select seasonal filter
Outline

- Overview of univariate methods
 - Problems caused by recessions

- Description of multivariate approach
 - Factor model of cross-sectional dependence
 - Application to seasonal adjustment problem

- Comparison of the two methods using industrial production (IP) data
 - $T = 120$; January 2002 to December 2011
 - Series with abrupt fall & recovery
 - Series with abrupt fall only
 - Series with abrupt fall & change in seasonal pattern
X-11 Univariate Seasonal Adjustment

Model:

\[x_t = c_t + s_t + e_t \]

- Trend \(c_t \) (low frequency variation)
- Seasonal factors \(s_t \) (predictable pattern, permitted to change over time)
- Irregular component \(e_t \)

Estimation of seasonal factors:

- Estimate trend (e.g., centered moving average)
- De-trend series
- Estimate seasonals from de-trended series (moving average)
- Remove seasonals from \(x_t \)
Example: Iron and Steel Industrial Production
Example: Iron and Steel IP

univariate seasonals (3 x 5)
Univariate Seasonal Adjustment: Interventions

- **regARIMA (X-12) solutions:**
 - Other trend filters (e.g., Henderson, robust detrending at FRB)
 - Interventions
 - Outliers (data effectively eliminated)
 - Ramps (hard to implement in timely manner)

- **Problems with the solutions:**
 - Choosing when to begin & end intervention (calendar time)
 - Begin & end intervention (real time)
 - “Throwing out” information
FRB Robust De-Trending Approach

IP for Raw Steel
Indexes and Robust Trend

- NSA IP
- SA IP
- Robust trend

<table>
<thead>
<tr>
<th>Year</th>
<th>NSA IP</th>
<th>SA IP</th>
<th>Robust Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>50</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>2008</td>
<td>60</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>2010</td>
<td>80</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>2011</td>
<td>90</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>2012</td>
<td>100</td>
<td>105</td>
<td>90</td>
</tr>
</tbody>
</table>

www.bea.gov
Common trend extracted from multiple related time series
- Approximate factor model (Chamberlain and Rothschild, 1983)
- Permits heterogeneity in the common trend

Intuitively, common sudden abrupt changes easy to accommodate (e.g., recessions)
- Recessions not treated as outliers
Multivariate Seasonal Adjustment

- Potential benefits:
 - Less need for interventions over the business cycle
 - No information ignored in estimating seasonal factors over downturns
 - Less need for analyst judgment in interventions

- Potential drawbacks:
 - Trend is less smooth

- Factor model is described in forthcoming BEA working paper by Ryan Greenaway-McGrevy
Example: Iron and Steel IP

![Graph showing the iron and steel index over time](chart.jpg)
Example: Iron and Steel IP
Example: Iron and Steel IP

- univariate seasonals (3 x 5)
- multivariate seasonals (3 x 5)
Other Seasonal Adjustment Issues

- Maintaining consistency between seasonal adjustment of the national accounts and the source data

- Coordination of seasonal adjustment in a decentralized statistical system

- “Residual seasonality” – A series derived as an aggregate of seasonally adjusted components may nevertheless exhibit seasonality