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Abstract

This paper studies the preliminary estimates of state wage and salary growth

produced by the U.S. Bureau of Economic Analysis (BEA), investigating whether

they may be improved using basic efficiency tests. State wage and salary growth

can be thought of as the sum of two components, an aggregate component equal

to the currently prevailing national growth rate, and a state specific component,

which we call the idiosyncratic variation in the estimates. BEA currently uses

extrapolation techniques to compute the idiosyncratic component of the prelim-

inary estimates, and this paper demonstrates some limitations to this approach.

While revisions to BEA’s preliminary numbers are currently predictable, some

simple regression-based generalizations of the extrapolation approach can reduce

this predictability, cutting down mean squared and mean absolute revisions. While

these reductions in revisions are not large, we can reject at conventional signifi-

cance levels the hypothesis that they are equal to zero.
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This paper studies the preliminary estimates of state wage and salary growth pro-

duced by the U.S. Bureau of Economic Analysis (BEA), investigating whether they may

be improved using basic efficiency tests. State wage and salary growth can be thought of

as the sum of two components, an aggregate component equal to the currently prevailing

national growth rate, and a state specific component, which we call the idiosyncratic

variation in the estimates. BEA currently uses extrapolation techniques to compute

the idiosyncratic component of the preliminary estimates, and this paper demonstrates

some limitations to this approach. While revisions to BEA’s preliminary numbers are

currently predictable, some simple regression-based generalizations of the extrapolation

approach can reduce this predictability, cutting down mean squared and mean absolute

revisions. While these reductions in revisions are not large, we can reject at conventional

significance levels the hypothesis that they are equal to zero.

At the heart of the approach taken in this paper is the most basic version of an

efficiency test, essentially a test of whether the preliminary wage and salary estimates

would be better predictors of subsequent wage and salary estimates (based on superior

information not available at the time of the preliminary estimates) if they were re-scaled

by some factor or set of factors. These type of tests have become routine in applied time

series econometrics, especially in the literature on forecasting; however few papers focus

on generalizing and applying these tests to panel data. This paper does so, working in

a context where our panel of growth rates is controlled to a national growth rate, and

where any modifications to the preliminary growth rates must leave the national growth

rate unaltered. Hence the paper focuses on testing the efficiency of and improving the

purely idiosyncratic variation in our panel of preliminary estimates.
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I. Data and Revisions

BEA reports its first quarterly estimate of state-level growth rates of wages and

salaries, the preliminary ∆WSp
i,t, in its initial report on state personal income, generally

released 4 months after the end of the quarter. Here the t subscript on ∆WSp indexes

quarters, and i indexes states. BEA’s second estimate, ∆WSs
i,t, is released 3 months

later. The second estimate and all subsequent BEA estimates are based largely on

wage and salary data from the Bureau of Labor Statistic’s (BLS)’s ES-202 program

(also called the Covered Employment and Wages program); we will call the BEA’s most

recent version of this data its “latest” version, ∆WSl
i,t.

1 The Bureau of Labor Statistics

(BLS) reports the ES-202 data that it receives from each state, on the total employment

and wage disbursements of the entire universe of businesses whose employees are covered

by the unemployment insurance system of the United States. The BLS Handbook of

Methods (2003) estimates that this universe encompasses about 97 percent of total U.S.

nonfarm payrolls.

The ES-202 data are not available when BEA releases its first quarterly estimate

of wage and salary growth, ∆WSp
i,t; for this reason BEA relies heavily on available

state-level data from the BLS’s Current Employment Statistics (CES) program. CES

data are computed from samples of businesses drawn from the ES-202 universe. The

sample in any given month is quite large, currently including around 400,000 worksites

employing around a third of all nonfarm payroll workers in the nation, but nevertheless,

the data are contaminated with sampling errors. For most industries, BEA receives

monthly not-seasonally adjusted CES data on employment, averages the monthly data

to quarterly frequency, seasonally adjusts, then uses the growth rate of this number

from the previous quarter as an extrapolator for the idiosyncratic state level variation

in wages and salary income for that industry.2 The base for the extrapolation is the
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level from the prior quarter computed from ES-202 data, aggregating across industries

produces ∆WSp
i,t =

WSp

i,t−WSs

i,t−1

WSs

i,t−1

.

We examine several measures of the size of revisions to the state wage and salary

growth rates, from the preliminary estimates to the latest available numbers. Two are

mean squared total revisions (MSTR), and mean absolute total revisions (MATR):

(1) MSTR =
1

IT

∑
t

∑
i

(
∆WSl

i,t − ∆WSp
i,t

)2
,

and:

MATR =
1

IT

∑
t

∑
i

∆WSl
i,t − ∆WSp

i,t
.(2)

Here I is the number of states, and T is the number of periods we are considering. These

are useful measures, and we will examine them. But they give equal weight to states of

vastly different sizes; we may want to weight the revisions to California’s growth rates

more heavily than Vermont’s. For weights, we start with the base for ∆WSp
i,t, namely

the second estimate of that state’s wage and salary income lagged one period, WSs
i,t−1;

we then normalize these weights so they sum over states to unity in each period,3 so

wi,t =
WSs

i,t−1∑
i WSs

i,t−1

. Then weighted mean squared total revisions (WMSTR), and weighted

mean absolute total revisions (WMATR) are:

(3) WMSTR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t

(
∆WSl

i,t − ∆WSp
i,t

)2
,

and:

WMATR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t ∆WSl
i,t − ∆WSp

i,t
.(4)
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The primary goal of the paper is to reduce (3) and (4) by replacing ∆WSp
i,t with a better

estimate of ∆WSl
i,t, some new estimate that we’ll call ̂∆WSl

i,t.

Each state level growth rate computed by BEA is the sum of an aggregate component

and a state-specific, idiosyncratic component. Call the aggregate component of each

preliminary growth rate ∆WSp
a,t =

∑
i wi,tWSp

i,t, and the idiosyncratic component for

each state ∆WSp
i−a,t = ∆WSp

i,t − ∆WSp
a,t (the difference between the state growth rate

and the national growth rate). For the idiosyncatic growth rates, we then have:

∑
i

wi,tWSp
i−a,t = 0 ∀t.

We can similarly decompose the latest available data ∆WSl
i,t. Substituting these decom-

positions into (3) and (4), we see that WMSTR and WMATR contain both revisions to

both the aggregate component and idiosyncratic components of the growth rates:

WMSTR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t

((
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

i−a,t − ∆WSp
i−a,t

))2
,

and:

WMATR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t
(
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

i−a,t − ∆WSp
i−a,t

)
.

BEA adjusts the aggregate component ∆WSp
a,t of the preliminary state growth rates to

equal the currently prevailing national wage and salary growth rate, net of some minor

adjustments. The currently prevailing national growth rate is computed using data and

methods quite different from the state-level growth rates; in this paper we leave ∆WSp
a,t

unaltered, examining strategies that modify only the idiosyncratic variation ∆WSp
i−a,t.

We modify these idiosyncratic growth rates, replacing them with new ̂∆WSl
i−a,t designed

to minimize weighted mean squared idiosyncratic revisions (WMSIR), and weighted
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mean absolute idiosyncratic revisions (WMAIR):4

(5) WMSIR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t

(
∆WSl

i−a,t − ̂∆WSl
i−a,t

)2

,

and:

WMAIR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t ∆WSl
i−a,t − ̂∆WSl

i−a,t
.(6)

Given the practice of controlling to the national growth rates, we must ensure that our

new preliminary idiosyncratic estimates sum to zero in each period:

(7)
∑

i

wi,t
̂∆WSl

i−a,t = 0 ∀t.

In this paper, we consider only ̂∆WSl
i−a,t that satisfy this property. In other words, we

consider solutions to the problem of minimizing (5) or (6) subject to (7) holding true.

Summary statistics on the variability of the idiosyncratic growth rates - means of

their squared values (approximately equal to their variances) and means of their ab-

solute values - are reported in table 1. Data cover the 50 states plus the District of

Columbia, and extend from 1980Q1-2001Q4 (4488 total observations); the table reports

variability measures for this full sample, as well as the 1996Q1-2001Q4 sub-sample that

will be used later for out-of-sample evaluation. Panels A and B report results where

different states’ growths rate are weighted by wi,t; panels C and D report results where

states’ growth rates are unweighted. In general, the weighted variances and absolute

values are less than the unweighted, indicating that the growth rate of wage and salary

income is more volatile in small states than in large states.For both the weighted and

unweighted statistics, the variability of ∆WSp
i−a,t is considerably less than the variability

of ∆WSl
i−a,t. Given BEA methodology, such a result is not obvious a priori - arguing
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for it is the fact that ∆WSl
i−a,t includes variation from earnings per worker as well as

total employment, while ∆WSp
i−a,t includes only variation from total employment; argu-

ing against it is the fact that ∆WSp
i−a,t includes variability from sampling errors while

∆WSl
i−a,t does not.5 Another interesting fact to note is the decline in variability of

CES growth rates ∆WSp
i−a,t in the 1996-2001 sub-sample, especially in the unweighted

statistics; the variability of the growth rates computed from UI data does not fall by

nearly as much if at all.

Finally, table 1 reports weighted and unweighted mean squared and mean absolute

values of ∆WSl
i−a,t − ∆WSp

i−a,t, or WMSIR, WMAIR, MSIR, and MAIR. For the full

sample each these quantities is smaller than its counterpart for ∆WSl
i−a,t alone, the

weighted and unweighted mean squared and mean absolute values of ∆WSl
i−a,t. However

for the 1996-2001 sub-sample this is not the case, indicating that over this sub-sample

mean absolute and squared idiosyncratic revisions would have been smaller had BEA set

to zero the idiosycratic component of the state-level preliminary estimates. This points

to some limitations to the current BEA practice of extrapolation.

II. Re-Scaling the Preliminary Estimates: Homogeneous βt

The extrapolation procedure assumes a one-for-one relationship between ∆WSl
i−a,t

and ∆WSp
i−a,t, setting ̂∆WSl

i−a,t = ∆WSp
i−a,t. A more general estimate would be:

̂∆WSl
i−a,t = βt∆WSp

i−a,t,

where the βt do not necessarily equal to 1. This is the essence of the basic efficiency

test considered in this paper: will the preliminary estimates become better predictors of

later estimates if they are re-scaled somehow; in the section we allow (limited) variation

in βt over time but no variation across states. It is immediately clear that an estimate
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of this form will satisfy (7), as:

∑
i

wi,tβt∆WSp
i−a,t = βt

∑
i

wi,t∆WSp
i−a,t = 0.

We have at least two good reasons to suppose βt �= 1. First, the CES data used to

compute ∆WSp
i−a,t are contaminated by sampling errors. These bias βt towards zero, so

even if the relation between ∆WSl
i−a,t and ∆WSp

i−a,t net of sampling errors were in fact

one-for-one, the relation between ∆WSl
i−a,t and ∆WSp

i−a,t inclusive of sampling errors

would be less than one-for-one. Second, the CES data do not capture much of the

variation in ∆WSl
i−a,t from earnings per worker; unfortunately the effect of this omitted

variation on βt is less clear than the effect of sampling errors.

With ̂∆WSl
i−a,t = βt∆WSp

i−a,t, we may use weighted ordinary least squares (OLS)

regression to minimize (5) by choice of βt, and weighted median (least absolute devia-

tions, or LAD) regression to minimize (6) by choice of βt. The panel regressions are of

the form:

(8) ∆WSl
i−a,t = βt∆WSp

i−a,t + Ui−a,t.

We attempt to identify strategies for estimating ̂∆WSl
i−a,t that can be implemented by

BEA in real time, and show that had these strategies been implemented, WMSIR and

WMAIR would have been smaller. As such, we follow an out-of-sample forecasting rou-

tine, with out-of-sample period starting in 1996Q1. For our first out-of-sample quarter,

we imagine BEA in July 1996 (four months after the close of the quarter), estimating (8)

on data from 1980Q1 up until some cut-off quarter, and using the estimated β̂t to pro-

duce the 51 predicted values β̂t∆WSp
i−a,t for 1996Q1. The choice of cutoff quater raises

a couple of issues. First, the data available to BEA for 1995Q4 and the prior couple

of quaters at that time would be in second vintage form, ∆WSs
i−a,t. As table 1 shows,
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the variance of the second vintage estimates is substantially larger than the variance

of the latest available estimates, probably because the seasonal adjustment procedure,

which uses future quarters as well as lagged quarters to estimate seasonal factors, is

incomplete at this point. Given the dissimilarity of the second vintage estimates to the

latest available estimates, using these latest quarters in second vintage form may bias

the estimates of βt designed to minimize (5) and (6). The second issue with our choice of

cutoff quarter has to do with limitations of the data employed in this paper: clearly the

latest available, 2005 vintage data used in this paper, for all quarters, would not have

been available to BEA in July 1996. For both these reasons, we chose the cutoff quarter

for our in-sample period to be three years prior to the quarter to be forecasted; so for

our β̂t∆WSp
i−a,t estimates for 1996Q1, we use β̂t estimated from (8) using data from

1980Q1 to 1993Q1. Our working assumption is that the 1980Q1-1993Q1 data available

to BEA in July 1996 is similar enough to the 1980Q1-1993Q1 data available to BEA in

March 2005 that our estimates of β̂t are largely unaffected by this substitution.6

Having produced the 51 predicted values ̂∆WSl
i−a,t for 1996Q1, the in-sample period

is then extended forward one quarter to re-estimate the regression parameters, which

are used to produce the 51 predicted values for 1996Q2; this rolling regression procedure

continues through 2001Q4, producing 24 predicted values for each state, 1224 in total.

Given these predicted values, we compute idiosyncratic revisions, and compare them

to actual idiosyncratic revisions that prevailed under the extrapolation procedure witĥ∆WSl
i−a,t = ∆WSp

i−a,t. We will use our various idiosyncratic revision measures (WMSIR,

MSIR, WMAIR, MAIR) to compare the old revisions with the hypothetical new ones.

The first row of table 2 shows the revision measures for the current extrapolation

procedure, which we call WMAIRc, WMSIRc, MAIRc, and MSIRc. The second row

shows results from ordinary least squares estimation of (8). For the 24 in-sample regres-

sions, β̂t ranged from 0.63 to 0.61, falling over the sample period, each with a standard
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error of about 0.06; we can clearly reject the hypthothesis that βt = 1. These standard

errors are computing using variances that are robust to arbitrary heteroskedasticity,

autocorrelation up to eighth-order, and contemporaneous correlation between states;

it’s computation is described in Appendix A.7 The lines in the row report WMAIR,

WMSIR, MAIR, and MSIR, and the ratio of each of these measures with its coun-

terpart for the current extrapolation procedure. Absolute revisions fall by about 5-6%

compared to the old procedure, WMSIR falls by 6%, and MSIR falls by 10%. The dif-

ference between the weighted and unweighted measures indicates that greater reductions

in revisions may be achieved for small states than for large states. The last number in

the row (labelled t∆WMAIR) is a t-statistic measuring the statistical significance of the

difference between WMAIR and WMAIRc from the current procedure. This t-statistic

is computed following the asymptotic formulas recommended in Diebold and Mariano

(1995) generalized to a panel context; the variance of ∆WMAIR is computed in a robust

fashion similar to the OLS standard errrors, allowing for autocorrelation and contem-

poraneous cross-state correlation of arbitrary form, with details provided in Appendix

B. With a value of about 5, this t-statistic strongly rejects at conventional significance

levels the hypothesis that the fall in WMAIR obtained from scaling down βt is equal

to zero.

The third row in the table reports results from least absolute deviations (LAD)

estimation of (8); these β̂t ranged from about 0.59 to 0.58, somewhat smaller than their

OLS counterparts. Comparing the OLS and LAD estimates further, Figure 1 shows

sub-sample OLS and LAD estimates for each of the 22 years in the full sample; each

sub-sample contains 204 observations. As can be seen, the LAD βs are somewhat more

stable across the sample, and for this reason perhaps more trustworthy. In any event,

the size of the reductions in WMAIR, WMSIR, MAIR, and MSIR are quite similar

whether we use LAD or OLS; under either set of βt we reject the hypothesis that the
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fall in WMAIR is equal to zero. Using the LAD βt, table 3A shows the ratios WMSIR
WMSIRc

and WMAIR
WMAIRc

broken down by quarter. For most quarters, weighted mean and absolute

revisions fall using these βt instead of imposing βt = 1. The WMSIR
WMSIRc

in 1999 are a bit

of a problem, as we could have guessed given Figure 1.

The state-by-state breakdown of these reductions in WMSIR and WMAIR is of

considerable interest as well; these are reported for the LAD βt in table 3B, with states

sorted by a a measure of size. Both WMSIR falls relative to extrapolation for 37 out of

the 51 states in the panel and WMAIR falls for 39 out of the 51 states. Over the short

out-of-sample period we have here, only 24 quarters for each state, we should expect some

states to fail to exhibit improvements simply due to chance, even when asymptotically,

improvements exist for all states; simulations confirm that we should expect about this

many failures even if the homogeneous βt model is true.8 However it is certainly of note

that each of the largest three states - California, New York, and Texas - fails to exhibit

forecast improvements, each deteriorating in fact when we examine WMSIR
WMSIRc

.

III. Re-Scaling the Preliminary Estimates: Heterogeneous βi,t

We next explore whether further reductions in revisions may be acheived by allowing

the scaling factors to vary across states. The state specific scaling factors would be βi,t,

with ̂∆WSl
i−a,t = βi,t∆WSp

i−a,t; however a complication arises here, as condition (7) will

in general not be met: ∑
i

wi,tβi,t∆WSp
i−a,t �= 0.

While this sum may be close to zero in most periods,9 it is better to impose a correction

ensuring condition (7) holds. We can do this if we take:

(9) ̂∆WSl
i−a,t = βi,t∆WSp

i−a,t −
∑

j

wj,tβj,t∆WSp
j−a,t.
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It can be readily verified that (7) is met for this ̂∆WSl
i−a,t. As a practical matter, it

should be noted that these ̂∆WSl
i−a,t could be computed using βi,t∆WSp

i−a,t alone as long

as we control to the national growth rate after computing those estimates, as controlling

to national will serve to subtract
∑

j wj,tβj,t∆WSp
j−a,t from each state time series and in

the end give us (9). In some cases it may be simpler for an analyst to compute ̂∆WSl
i−a,t

in this way.

For purposes of estimation, when minimizing (5) or (6), we minimize:

1∑
t

∑
j wj,t

∑
t

∑
i

wi,t

(
∆WSl

i−a,t −
(

βi,t∆WSp
i−a,t −

∑
j

wj,tβj,t∆WSp
j−a,t

))2

, or:

1∑
t

∑
j wj,t

∑
t

∑
i

wi,t ∆WSl
i−a,t −

(
βi,t∆WSp

i−a,t −
∑

j wj,tβj,t∆WSp
j−a,t

)
by choice of βi,t. These problems may again be solved by simple OLS and LAD regression,

with explanatory variables appropriately defined. For each state k write ∆WSp
k−a,t and

∆WSl
k−a,t in vector form, so:

∆WSp
k−a =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∆WSp
k−a,1

∆WSp
k−a,2

...

∆WSp
k−a,T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
; ∆WSl

k−a =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∆WSl
k−a,1

∆WSl
k−a,2

...

∆WSl
k−a,T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and further stacking the individual states together into a panel, our (unweighted) re-

12



gression may be written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆WSl
1−a

. . . . . . . .

∆WSl
2−a

. . . . . . . .

...

. . . . . . . .

∆WSl
I−a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= β1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆WSp
1−a

. . . . . . . .

0

. . . . . . . .

...

. . . . . . . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆WSp
1−a

. . . . . . . .

∆WSp
1−a

. . . . . . . .

...

. . . . . . . .

∆WSp
1−a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
W

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ . . .

. . . + βI

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

. . . . . . . .

0

. . . . . . . .

...

. . . . . . . .

∆WSp
I−a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆WSp
I−a

. . . . . . . .

∆WSp
I−a

. . . . . . . .

...

. . . . . . . .

∆WSp
I−a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
W

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1−a

. . . .

u2−a

. . . .

...

. . . .

uI−a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the elements of vectors with the W subscript have been multiplied by their re-

spective weights, the zeros in this expression represent vectors of length T , and uk−a

represents the vector of errors for state k. Estimating this regression by weighted least

squares minimizes (5), and estimating it by weighted least absolute deviations minimizes

(6). We follow the same rolling regression and out-of-sample evaluation procedure as in

the previous section; table 4 reports the main summary statistics from this analysis.

Once again the results obtained from OLS estimation are quite similar to those ob-

tained from LAD. Allowing for heterogeneity in the scaling factors leads to some incre-

mental improvements compared with the homogeneous scaling factor results; weighted

and unweighted absolute revisions still fall by about 6% compared to the old procedure,

13



but WMSIR now falls by 10%, and MSIR falls by 13%. We again strongly reject the hy-

pothesis that the fall in WMAIR equals zero. Table 5A shows WMSIR
WMSIRc

and WMAIR
WMAIRextrap

broken down by quarter for the OLS βi,t, and table 6A shows that breakdown for the

LAD βi,t. The biggest problem year with the βt estimates, 1999, is now longer much of

an issue. Tables 5B and 6B show the WMSIR
WMSIRc

and WMAIR
WMAIRc

for each state, along with the

range of βi,t from the 24 in-sample estimates, and the standard errors for the OLS esti-

mates, again computed using robust variance-covariance matrices as in Appendix A. For

the individual states, the βi,t vary much more as we roll the sample forward than does

the aggregate βt; random fluctuations in effectively much smaller samples are surely to

blame for part of this. However the improvements in the out-of-sample revisions argue

that there is indeed substantial heterogeneity in the scaling factors across states; the

βi,t for Texas and New York are evidently larger than average, and accounting for this

alleviates the deterioration in WMSIR
WMSIRc

we see in the homogeneous βt model.

IV. Conclusion and Extensions

This paper has demonstrated how basic efficiency tests may be conducted on id-

iosyncratic variation in a panel of preliminary estimates or predictions, implementing

the tests on BEA’s preliminary estimates of state wage and salary growth. We show how

to exploit the tests to develop simple strategies for improving the preliminary estimates,

demonstrating with an out-of-sample analysis that revisions to BEA’s preliminary num-

bers would have been significantly smaller had the strategies been implemented. BEA

could implement these simple strategies without changing current procedure much at all.

Since controlling to the national estimate is generally the last step in the process of com-

puting the preliminary state growth rates, BEA need not even compute the idiosyncratic

state-level variation in the estimates; all it need do is re-scale the preliminary numbers

14



by a factor of around 0.6, or by some set of state-specific factors, as the penultimate

step in the process before controlling to the national total. BEA is currently evaluating

the feasibility of implementing such re-scalings.
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Appendix A: Standard Errors for the Weighted Least Squares Estimator

Let IT denote the total sample size; let X denote the IT × K matrix of regressors;

let Ω represent the IT ×IT variance-covariance matrix of regression residuals; finally let

W denote the IT ×IT diagonal matrix with the vector of the square root of the weights

on the diagonal. Then, following standard practice, the variance-covariance matrix of

the OLS parameter estimates is computed as:

(X′WX)−1X′WΩWX(X′WX)−1.

X′WΩWX is the sum of two additive components. The first component (which we

shall call X′WΩ0WX) is robust to both arbitrary heteroskedasticity and cross correla-

tion. The matrix can be represented as:

X′WΩ0WX =

I∑
i=1

I∑
j=1

T∑
t=1

(x′
i,t

√
wi,tui,tuj,t

√
wj,txj,t + x′

j,t

√
wj,tuj,tui,t

√
wi,txi,t),

where xi,t corresponds to the appropriate row vector of X. Rearranging summations

yields the convenient expression for computing this matrix used in this paper:

X′WΩ0WX =

T∑
t=1

I∑
i=1

I∑
j=1

(x′
i,t

√
wi,tui,tuj,t

√
wj,txj,t + x′

j,t

√
wj,tuj,tui,t

√
wi,txi,t)

=
T∑

t=1

X′
tWtΩ0,tWtXt.

Here Xt denotes the I rows of X that correspond to the year t cross sectional observa-

tions. Similarly, Ω0,t denotes the matrix utu
′
t, the outer product of the vector of time

t regression residuals, and Wt denotes the diagonal matrix with the square root of the

weights for time the t observations. The last expression makes clear that, after sorting
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the data by year, the cross-correlation corrected variance-covariance matrix of residuals

will be block diagonal (ignoring any autocorrelation for the moment), with each each

block corresponding to a year. This variance-covariance matrix has the same form as

those used in clustered samples to correct for arbitrary within-cluster correlations, the

only difference being that each year plays the role of a cluster.

A second component of the estimated matrix X′WΩWX corrects for autocorrelation

as suggested by Whitney K. Newey and Kenneth D. West (1987):

X′WΩkWX =
k′∑

k=1

(
k′ + 1 − k

k′ + 1

) I∑
j=1

T∑
t=1+k

⎛⎜⎝ x′
j,t
√

wj,tuj,tuj,t−k
√

wj,t−kxj,t−k

+x′
j,t−k

√
wj,t−kuj,t−kuj,t

√
wj,txj,t

⎞⎟⎠ .

In this paper k′ is set to eight, so the matrix corrects for eighth-order autocorrelation.

The full X′WΩWX is then computed as:

X′WΩWX = X′WΩ0WX + X′WΩkWX.

Appendix B: Standard Error for the Difference between

Two Sets of Panel Forecasts

Given the two forecasts for state i in period t, call the difference between their loss

functions di,t; Diebold and Mariano (1995) call this the loss-differential series. When the

loss function is measured as the absolute value of the forecast error, we have:

di,t = ∆WSl
i−a,t − ̂∆WSl

i−a,t
− ∆WSl

i−a,t − ∆WSp
i−a,t

.

Then the weighted average of di,t is the difference between old WMAIR and new WMAIR,

or ∆WMAIR; this is the sample mean loss-differential: d = 1∑
t

∑
j wj,t

∑
t

∑
i wi,tdi,t. The
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variance of d allows for arbitrary heteroskedasticity in the loss-differential series, correla-

tion between the loss-differentials for different states in any given time period (contem-

poraneous cross correlation in the loss-differentials), and eighth-order autocorrelation in

the loss-differentials. With k′ = 8, it is computed as:

V
(
d
)

=
1∑

t

∑
j wj,t

I∑
i=1

I∑
j=1

T∑
t=1

⎛⎜⎝ √
wi,t

(
di,t − d

) (
dj,t − d

)√
wj,t

+
√

wj,t

(
dj,t − d

) (
di,t − d

)√
wi,t

⎞⎟⎠
+

1∑
t

∑
j wj,t

k′∑
k=1

I∑
j=1

T∑
t=1+k

⎛⎜⎝ √
wj,t

(
dj,t − d

) (
dj,t−k − d

)√
wj,t−k

+
√

wj,t−k

(
dj,t−k − d

) (
dj,t − d

)√
wj,t.

⎞⎟⎠ .

The set of terms in the first line of this expression is computed using the same set of

rearrangements used to compute X′WΩ0WX in Appendix A.
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Table 1: Summary Statistics
BEA Estimates of State Wage and Salary Growth, Idiosyncratic Variation

Panel A: Weighted Mean of Squared Values

∆WSp
i−a,t ∆WSs

i−a,t ∆WSl
i−a,t ∆WSl

i−a,t − ∆WSp
i−a,t

1980-2001 0.53 1.19 0.98 0.87
1996-2001 0.29 1.34 1.09 1.10

Panel B: Weighted Mean of Absolute Values

∆WSp
i−a,t ∆WSs

i−a,t ∆WSl
i−a,t ∆WSl

i−a,t − ∆WSp
i−a,t

1980-2001 0.50 0.80 0.70 0.68
1996-2001 0.40 0.87 0.73 0.73

Panel C: Unweighted Mean of Squared Values

∆WSp
i−a,t ∆WSs

i−a,t ∆WSl
i−a,t ∆WSl

i−a,t − ∆WSp
i−a,t

1980-2001 0.80 1.55 1.23 1.11
1996-2001 0.42 1.53 1.13 1.20

Panel D: Unweighted Mean of Absolute Values

∆WSp
i−a,t ∆WSs

i−a,t ∆WSl
i−a,t ∆WSl

i−a,t − ∆WSp
i−a,t

1980-2001 0.62 0.92 0.79 0.78
1996-2001 0.47 0.94 0.78 0.80
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Table 3A: Out-of-Sample Revision Measures by Quarter, Relative to Current
βt homogeneous across states, LAD

Quarter WMSIR
WMSIRc

WMAIR
WMAIRc

9601 0.77 0.91
9602 1.01 0.90
9603 0.76 0.89
9604 0.90 0.96
9701 0.82 0.88
9702 0.93 1.04
9703 0.86 0.95
9704 0.69 0.85
9801 0.81 0.92
9802 0.80 0.84
9803 1.00 0.99
9804 0.91 0.96
9901 1.00 0.96
9902 1.13 1.05
9903 1.00 1.01
9904 0.96 0.97
10001 0.93 0.94
10002 0.95 0.97
10003 1.02 1.00
10004 0.98 1.00
10101 0.88 0.92
10102 0.93 0.95
10103 0.87 0.95
10104 1.03 1.01
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Table 3B: Out-of-Sample Revision Measures by State, Relative to Current
βt homogeneous across states, LAD

State WMSIR
WMSIRc

WMAIR
WMAIRc

Wyoming 0.88 0.89
Vermont 0.76 0.89

North Dakota 0.98 1.02
South Dakota 1.08 1.07

Montana 0.85 0.89
Alaska 1.01 1.00
Idaho 0.67 0.85

Delaware 0.70 0.83
Rhode Island 0.85 0.90

Maine 1.01 0.99
New Hampshire 0.84 0.94

Hawaii 1.16 1.12
New Mexico 1.00 1.01

West Virginia 0.86 0.91
Nebraska 1.04 1.10
Nevada 0.90 0.97
Utah 0.84 0.97

Arkansas 0.72 0.91
Mississippi 0.91 0.88

DC 0.97 0.94
Kansas 1.15 1.07
Iowa 0.87 0.86

Oklahoma 0.84 0.93
Oregon 0.80 0.93

Kentucky 0.85 0.93
South Carolina 0.80 0.89

Alabama 0.92 0.95
Louisiana 1.07 0.99
Arizona 1.17 1.08
Colorado 0.94 0.95

Connecticut 0.74 0.87
Tennessee 0.83 0.92
Wisconsin 1.01 0.94
Minnesota 0.95 1.04
Missouri 0.82 0.91
Maryland 0.85 0.96
Indiana 0.77 0.87

Washington 0.86 0.93
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North Carolina 0.74 0.87
Virginia 0.93 0.98
Georgia 0.69 0.81

Massachusetts 0.82 0.95
New Jersey 1.09 1.00
Michigan 0.78 0.88

Ohio 0.97 0.93
Pennsylvania 0.81 0.91

Florida 0.66 0.79
Illinois 0.78 0.86
Texas 1.11 0.99

New York 1.07 1.04
California 1.03 0.99
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Table 5A: Out-of-Sample Revision Measures by Quarter, Relative to Current
βi,t heterogeneous across states, OLS

Quarter WMSIR
WMSIRc

WMAIR
WMAIRc

9601 0.89 1.00
9602 0.94 0.79
9603 0.68 0.85
9604 0.91 0.96
9701 0.76 0.84
9702 0.90 1.04
9703 0.85 0.98
9704 0.65 0.83
9801 0.75 0.88
9802 0.76 0.81
9803 1.02 1.01
9804 0.98 0.99
9901 0.92 0.94
9902 0.96 0.97
9903 1.00 1.02
9904 0.84 0.94
10001 0.85 0.91
10002 0.94 0.97
10003 1.07 1.02
10004 0.97 1.02
10101 0.97 0.92
10102 0.93 0.96
10103 0.85 0.95
10104 1.06 1.02
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Table 5B: Out-of-Sample Revision Measures by State, Relative to Current
βi,t heterogeneous across states, OLS

State β (range) seβ (range) WMSIR
WMSIRc

WMAIR
WMAIRc

Wyoming 0.71 to 0.73 (0.17 to 0.19) 0.90 0.90
Vermont 0.16 to 0.26 (0.12 to 0.13) 0.64 0.83

North Dakota 0.98 to 1.00 (0.12 to 0.13) 0.98 0.98
South Dakota 0.66 to 0.73 (0.18 to 0.20) 1.02 1.03

Montana 0.32 to 0.33 (0.15 to 0.17) 0.84 0.89
Alaska 0.84 to 0.85 (0.09 to 0.10) 0.98 0.99
Idaho 0.46 to 0.59 (0.15 to 0.18) 0.65 0.84

Delaware 0.08 to 0.13 (0.06 to 0.06) 0.54 0.70
Rhode Island 0.27 to 0.34 (0.15 to 0.18) 0.86 0.90

Maine 0.35 to 0.40 (0.12 to 0.14) 1.03 1.00
New Hampshire 0.44 to 0.51 (0.15 to 0.17) 0.82 0.92

Hawaii 0.78 to 1.01 (0.18 to 0.22) 1.04 1.04
New Mexico 0.78 to 0.95 (0.20 to 0.30) 1.01 1.01

West Virginia 1.02 to 1.05 (0.08 to 0.09) 1.01 1.01
Nebraska 0.39 to 0.43 (0.12 to 0.14) 1.09 1.14
Nevada 0.63 to 0.77 (0.11 to 0.13) 0.92 0.98
Utah 0.81 to 0.94 (0.08 to 0.16) 0.96 0.99

Arkansas 0.37 to 0.41 (0.10 to 0.13) 0.62 0.89
Mississippi 0.54 to 0.64 (0.18 to 0.23) 0.90 0.87

DC 0.55 to 0.74 (0.11 to 0.15) 1.00 0.97
Kansas 0.16 to 0.19 (0.12 to 0.15) 1.88 1.23
Iowa 0.68 to 0.72 (0.16 to 0.17) 0.88 0.88

Oklahoma 1.03 to 1.13 (0.09 to 0.11) 1.04 1.02
Oregon 0.69 to 0.74 (0.13 to 0.16) 0.82 0.94

Kentucky 0.32 to 0.33 (0.09 to 0.09) 0.79 0.94
South Carolina 0.25 to 0.32 (0.13 to 0.15) 0.69 0.82

Alabama 0.40 to 0.46 (0.13 to 0.15) 0.90 0.95
Louisiana 0.97 to 1.16 (0.11 to 0.22) 0.99 0.99
Arizona 0.52 to 0.67 (0.15 to 0.18) 1.13 1.07
Colorado 0.89 to 1.05 (0.12 to 0.15) 0.99 0.99

Connecticut 0.42 to 0.46 (0.12 to 0.14) 0.68 0.82
Tennessee 0.03 to 0.11 (0.14 to 0.16) 0.68 0.87
Wisconsin 0.38 to 0.42 (0.16 to 0.18) 1.04 0.90
Minnesota 0.24 to 0.35 (0.13 to 0.14) 0.96 1.13
Missouri -0.02 to 0.04 (0.10 to 0.11) 0.81 0.91
Maryland 0.27 to 0.36 (0.18 to 0.24) 0.82 0.96
Indiana 0.52 to 0.62 (0.14 to 0.15) 0.75 0.87

Washington 0.31 to 0.44 (0.15 to 0.21) 0.82 0.92
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North Carolina 0.37 to 0.43 (0.10 to 0.11) 0.65 0.83
Virginia 0.53 to 0.57 (0.20 to 0.22) 0.94 0.99
Georgia 0.40 to 0.50 (0.12 to 0.14) 0.65 0.78

Massachusetts 0.30 to 0.34 (0.13 to 0.14) 0.74 0.94
New Jersey 0.28 to 0.38 (0.15 to 0.17) 1.20 1.02
Michigan 0.50 to 0.54 (0.09 to 0.10) 0.77 0.89

Ohio 0.46 to 0.50 (0.13 to 0.16) 0.95 0.92
Pennsylvania 0.36 to 0.39 (0.06 to 0.07) 0.74 0.88

Florida 0.46 to 0.51 (0.12 to 0.13) 0.63 0.81
Illinois 0.48 to 0.50 (0.10 to 0.11) 0.74 0.85
Texas 1.19 to 1.27 (0.17 to 0.18) 0.95 0.99

New York 1.07 to 1.16 (0.15 to 0.19) 1.00 1.00
California 0.32 to 0.49 (0.19 to 0.22) 1.04 0.99
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Table 6A: Out-of-Sample Revision Measures by Quarter, Relative to Current
βi,t heterogeneous across states, LAD

Quarter WMSIR
WMSIRc

WMAIR
WMAIRc

9601 0.89 0.99
9602 0.94 0.79
9603 0.68 0.85
9604 0.91 0.97
9701 0.78 0.87
9702 0.89 1.03
9703 0.84 0.97
9704 0.67 0.85
9801 0.75 0.90
9802 0.75 0.83
9803 1.04 0.99
9804 1.00 1.00
9901 0.92 0.92
9902 0.93 0.96
9903 0.98 1.00
9904 0.80 0.93
10001 0.86 0.92
10002 0.93 0.95
10003 1.03 1.01
10004 0.97 1.02
10101 1.01 0.94
10102 0.95 0.97
10103 0.86 0.94
10104 1.09 1.04
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Table 6B: Out-of-Sample Revision Measures by State, Relative to Current
βi,t heterogeneous across states, LAD

State β (range) WMSIR
WMSIRc

WMAIR
WMAIRc

Wyoming 0.56 to 0.66 0.88 0.89
Vermont 0.12 to 0.15 0.62 0.82

North Dakota 1.16 to 1.21 1.03 1.00
South Dakota 0.62 to 0.76 1.01 1.03

Montana 0.18 to 0.19 0.87 0.89
Alaska 0.77 to 0.83 0.98 1.00
Idaho 0.58 to 0.60 0.68 0.86

Delaware 0.12 to 0.17 0.54 0.71
Rhode Island 0.16 to 0.25 0.87 0.90

Maine 0.31 to 0.38 1.04 1.01
New Hampshire 0.54 to 0.86 0.90 0.97

Hawaii 0.76 to 1.29 1.02 1.00
New Mexico 0.82 to 0.87 0.99 1.01

West Virginia 1.03 to 1.03 1.01 1.01
Nebraska 0.38 to 0.48 1.07 1.13
Nevada 0.54 to 0.66 0.91 0.98
Utah 0.78 to 0.96 0.98 1.00

Arkansas 0.40 to 0.58 0.66 0.89
Mississippi 0.36 to 0.66 0.90 0.86

DC 0.55 to 0.63 0.99 0.95
Kansas 0.24 to 0.27 1.66 1.16
Iowa 0.77 to 0.85 0.91 0.92

Oklahoma 1.02 to 1.05 1.02 1.01
Oregon 0.65 to 0.80 0.80 0.93

Kentucky 0.24 to 0.25 0.78 0.95
South Carolina 0.07 to 0.21 0.64 0.79

Alabama 0.32 to 0.37 0.89 0.95
Louisiana 1.02 to 1.16 0.98 0.99
Arizona 0.47 to 0.57 1.19 1.10
Colorado 0.87 to 1.14 1.01 1.01

Connecticut 0.51 to 0.62 0.72 0.86
Tennessee 0.00 to 0.15 0.69 0.87
Wisconsin 0.39 to 0.49 1.03 0.90
Minnesota 0.25 to 0.42 0.95 1.11
Missouri -0.07 to 0.08 0.82 0.92
Maryland 0.18 to 0.31 0.81 0.95
Indiana 0.32 to 0.64 0.73 0.86

Washington 0.30 to 0.43 0.82 0.92
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North Carolina 0.34 to 0.39 0.64 0.83
Virginia 0.53 to 0.59 0.95 1.00
Georgia 0.51 to 0.65 0.74 0.86

Massachusetts 0.47 to 0.48 0.78 0.94
New Jersey 0.34 to 0.43 1.20 1.03
Michigan 0.51 to 0.52 0.77 0.89

Ohio 0.56 to 0.70 0.93 0.91
Pennsylvania 0.45 to 0.53 0.76 0.90

Florida 0.37 to 0.48 0.63 0.82
Illinois 0.33 to 0.34 0.74 0.86
Texas 1.02 to 1.18 0.95 0.98

New York 1.02 to 1.38 0.99 0.99
California 0.47 to 0.65 1.01 0.98
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Notes

1This paper works with the March 2005 vintage of state personal income.

2BEA does receive state-level average weekly hours and average hourly earnings data

for manufacturing workers, which it used to produce a manufacturing earnings mea-

sures for its extrapolations over the sample period studied in this mimeo. For all other

industries, employment data alone was used for the extrapolations.

3This removes from the weights the effect of aggregate wage and salary growth; if we

did not do this more recent revisions in the sample may receive a substantially higher

weight than older revisions.

4Another way to proceed would be to leave ∆WSp
a,t unaltered, but chose ̂∆WSl

i−a,t

to minimize WMSTR and WMATR, or:

WMSTR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t

((
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

i−a,t − ̂∆WSl
i−a,t

))2

,

and:

WMATR =
1∑

t

∑
j wj,t

∑
t

∑
i

wi,t
(
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

i−a,t − ̂∆WSl
i−a,t

)
.

When minimizing squared deviations, the ̂∆WSl
i−a,t that minimize WMSIR are the samê∆WSl

i−a,t that minimize WMSTR, so the decision of whether or not to include the
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aggregate revisions is immaterial. To see this, note that:

∑
i

wi,t

((
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

i−a,t − ̂∆WSl
i−a,t

))2

=
∑

i

wi,t

⎛⎜⎝ (
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

i−a,t − ̂∆WSl
i−a,t

)
−∑

j wj,t

((
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

j−a,t − ̂∆WSl
j−a,t

))
⎞⎟⎠

2

+

[∑
j

wj,t

((
∆WSl

a,t − ∆WSp
a,t

)
+
(
∆WSl

j−a,t − ̂∆WSl
j−a,t

))]2

≈
∑

i

wi,t

(
∆WSl

i−a,t − ̂∆WSl
i−a,t

)2

+
[
∆WSl

a,t − ∆WSp
a,t

]2
,

using
∑

i wi,t = 1 repeatedly,
∑

i wi,t∆WSl
i−a,t ≈ 0, which is very close to holding true

in our data, and
∑

i wi,t
̂∆WSl

i−a,t = 0, which we impose on our estimates. So for each

period t, WMSTR equals WMSIR plus the aggregate revision, which is just a constant

that will have no impact on the minimized choice of ̂∆WSl
i−a,t. For absolute revisions,

choice of WMATR versus WMAIR will have some impact on ̂∆WSl
i−a,t, but given the

result for squared revisions, there is no reason to believe this impact will be large;̂∆WSl
i−a,t should be quite similar in either case.

5We also see that the variability of the second estimates are substantially larger than

the variability of the latest ones, apparently revisions to seasonal factors after the second

estimate dampen variation in the data considerably.

6In evaluating this assumption, it should be kept in mind that, after three years, the

seasonal adjustment procedure is largely completed, and as discussed in the prior section,

the source data in all vintages after the second remains the same, and is essentially a

census of all wage and salary income.

7The corrections to the standard errors matter, as the uncorrected standard errors
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were about 0.02.

8Specifically, I generated time series of the same length used in this paper, drawing

values of xt and ut from a normal distribution (using Matlab 7.0), and computing yt =

xtβ + ut, where β = 0.6. The distribution of xt has variance σ2
x = 0.5, and I fix the

variance of yt at one by taking the distribution of ut to have variance σ2
u = 1−β2σ2

x; these

variances approximately match up with the data on weighted summary statistics in table

1. I then repeat the rolling regression procedure used in this paper on the simulated

data, comparing rolling regression results with those from extrapolation that assumes,

incorrectly, that β = 1. I conducted 5000 of these simulations; MSIR from rolling

regression was smaller than MSIR from extrapolation in 74% of these, and MAIR was

smaller in 71%, similar percentages to the 37
51

= 73% and 39
51

= 76% observed in the data.

Average MSIR
MSIRc

and MAIR
MAIRc

in the simulations were about 0.93 and 0.96, respectively,

also similar to those found in table 2.

9In particular, we have:

∑
i

wi,tβi,t∆WSp
i−a,t =

∑
i

wi,t

(∑
j

wj,tβj,t

)
∆WSp

i−a,t

+
∑

i

wi,t

(
βi,t −

∑
j

wj,tβj,t

)
∆WSp

i−a,t

= βt

∑
i

wi,t∆WSp
i−a,t +

∑
i

wi,t

(
βi,t − βt

)
∆WSp

i−a,t

=
∑

i

wi,t

(
βi,t − βt

)
∆WSp

i−a,t

with βt =
∑

j wj,tβj,t, so this sum will be large only if there is some systematic relation

between the cross sectional variation in βs and cross sectional variation in growth rates;

there is no reason to believe this is the case.
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Figure 1: Betas by Year, Ordinary Least Squares and Least Absolute Deviations Estimates
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