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Summary. The randomized controlled trial (RCT) is the standard for establishing efficacy and 

tolerability of treatments. However, the statistical evaluation of treatment effects in RCTs has 

remained largely unchanged for several decades. A new approach to Bayesian hypothesis testing for 

RCTs that leverages posterior simulation methods is developed. This approach (1) employs Monte 

Carlo simulation to obtain exact posterior distributions with fewer restrictive assumptions than 

required by current standard methods, allowing for a relatively simple procedure for inference with 

analytically intractable models, and (2) utilizes a novel approach to Bayesian hypothesis testing. 
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1. Introduction 

During the last century, the randomized controlled trial (RCT) became the “gold standard” for 

establishing the efficacy of treatment interventions in medicine, social science, education and beyond 

(Bothwell et al., 2016). By the 1980s, the US Food and Drug Administration and the European 

Medicines Agency required positive RCTs (i.e., trials in which an experimental intervention is superior 

to a control intervention) for the approval of new medications or for the approval of previously 

available interventions in new diseases. Beyond satisfying regulatory requirements, RCTs provide 

estimates of average treatment effect (ATE) (Bothwell et al., 2016) as well as comparative efficacy and 

tolerability data among interventions (Lumley, 2002).  There has been considerable effort to improve 

the design of these trials; for example, a large literature has developed on adaptive designs (Berry, 

2006; Collins et al., 2012). However, the statistical methodology for evaluating treatment-control 

differences from these trials, with the exception of a handful of theoretical innovations, e.g., clinical 

trial simulations (Holford, Ma, & Ploeger, 2010), have remained largely unchanged over the past forty 

years or more.  

In clinical RCTs, the traditional approach to comparing treatment effects for quantitative measures 

(e.g., change in dimensional symptom severity measure) utilizes a Welch t-test or, if covariates are 

available (e.g. study site, study visit, interaction terms), Mixed Model for Repeated Measures (MMRM) 

analysis is employed. For binary outcomes and in small samples, Pearson’s χ2 test and Fisher’s exact 

test are commonly used (March et al. 2004; Strawn et al. 2015; Walkup et al. 2008). Pearson’s test is an 

asymptotic test, so unreliable with small samples, while Fisher’s exact test is a conditional frequentist 

test that increases discreteness and thus the conservatism of the test. Because of this conservatism, 

the observed rejection rate is often below the nominal significance level (Williamson et al., 2017) The 

limitations of these approaches (e.g., distributional assumptions, difficulty addressing heterogeneity of 

variance) have been extensively discussed (Lee & Chu, 2012). While Bayesian approaches to analysis 

have been suggested (Spiegelhalter, et al., 1994, Spiegelhalter et al., 2004, Lee & Chu, 2012), these have 

not addressed both the inability to test hypotheses without employing unrealistic informative priors, 

and the difficulty obtaining analytically intractable posterior distributions.   



Modern Monte Carlo (MC) posterior simulation methods have largely addressed the problem of 

analytical intractability, but have yet to be widely applied to the analysis of RCTs.  Problems with the 

Bayesian approach to hypothesis testing may be the main reason preventing widespread adoption: the 

common sentiment appears to be that, while Bayesian inference would be the preferred approach, and 

despite the many problems with the frequentist approach to hypothesis testing, (Gelman & Carlin, 

2017; McShane & Gal, 2017)  the problems with Bayesian hypothesis testing are considered more 

serious (Bernardo, 1999; Cousins, 2017). For example, this sentiment has been expressed as: “we could 

have followed a Bayesian inference procedure. However, in a clinical trial context, a traditional 

hypothesis test is expected (due to both this being a common practice and because of regulatory 

requirements)” (Williamson et al., 2017). 

With these considerations in mind, and recognizing the potential advantages of Bayesian methods in 

this context (Lee and Chu 2012; Spiegelhalter, Abrams, and Myles 2004), we sought to develop and 

validate a new approach to Bayesian hypothesis testing for RCTs that leverages posterior simulation 

methods developed over the last few decades. This approach provides a fully Bayesian inference and 

decision framework for analysis of RCTs.  Specifically, this approach (1) employs modern MC 

simulation to obtain exact posterior distributions with fewer restrictive assumptions than required by 

current standard methods, allowing for a relatively simple procedure for inference with analytically 

intractable models, and (2) employs a novel approach to Bayesian hypothesis testing that allows the 

use of the same priors used for inference (including uninformative priors) and does not suffer from 

the Jeffreys-Lindley-Bartlett paradox (Mills, 2018). 

Categorical and quantitative data from a federally-funded NIH trial of pediatric patients with anxiety 

disorders (Walkup et al., 2008) were analyzed to validate the proposed methodology and to assess the 

impact of relaxing restrictive assumptions regarding variance-covariance structure and treatment 

response in this RCT.   

2. Objective Posterior Odds for Bayesian hypothesis testing 

The lack of a widely accepted method for precise null hypothesis testing represents a major hurdle to 

applying Bayesian inferential methods to the analysis of RCTs.  Despite the many flaws and misgivings 

with null hypothesis significance testing (NHST) and the use of p-values, many researchers do not 



consider current Bayesian testing methods a viable alternative (Cousins, 2017; Gelman & Carlin, 2017; 

McShane & Gal, 2017). This section applies a new Bayesian testing procedure (Mills, 2018) to evaluate 

RCTs; this procedure addresses several of the shortcomings of both NHST and Bayes factors. 

Suppose we wish to evaluate the hypotheses  vs. , where  is the difference in 

average treatment effect (ATE) between treatment and control, or the difference in efficacy for two 

different treatments.  The new testing procedure is derived by replacing the null and alternative 

hypotheses.  For any  the null hypothesis is defined as  and the alternative hypothesis is 

replaced with a set of hypotheses, ℤ  where 

 is the set of integers,  is the parameter space for  and  for all ℤ defines a partition 

 of  such that .  The null hypothesis can then be compared to each alternative 

hypothesis. Minimizing expected loss over the set of hypotheses defined by the partition leads to the 

decision rule: reject  if, 

,                                                         

where the posterior odds ratio, , provides the maximum odds against the null hypothesis given 

data ,  is the maximum a posteriori (MAP) estimate,  is the loss associated 

with incorrectly rejected the null hypothesis (type I error), and  is the loss associated with incorrectly 

failing to reject the null hypothesis (type II error).   As  , where 

The evidence against the null hypothesis is then evaluated by computing the objective posterior odds 

(2).  This testing procedure does not suffer from the Jeffreys-Lindley-Bartlett paradox and allows the 

use of the same priors used for posterior inference, so that scientific objectivity can be maintained 

(Mills, 2018). The outcome of the test is determined by the evidence from the data and any background 

information incorporated in the likelihood and prior. With a relatively uninformative prior, the prior 

has little to no influence on the test result.   



For precise testing for an unknown mean, critical odds values for  that approximately match 10%, 

5% and 1% significance levels are  4:1, 7:1 and 30:1 respectively (Mills, 2018).  While these 

rules of thumb may be useful when no other information is available, the derivation of the posterior 

odds from decision theoretic considerations allows more careful consideration of an appropriate value 

for .  This is advisable because it is difficult, and possibly misguided, to provide generic guidelines 

if the magnitude of effect will vary depending on the situation; a 10% difference may be a substantial 

improvement in some settings, but trivial in others.  There are merits to keeping the determination of 

statistical significance separate from the determination of magnitudinal significance, and consideration 

of the relative costs of the type I and II errors, , for a particular situation can provide more 

appropriate guidelines.  For example, experimental physicists often follow the `5-sigma' rule, so for a 

Student-  posterior and 50 observations, > :1 is required.  In psychiatry on the other hand, 

something close to 5% or even 10% significance may be sufficient to indicate that a therapy with no 

negative side effects is worthy of consideration by practitioners, especially if failure to treat will likely 

have serious consequences for the patient.  In this case :1 may be sufficient to warrant 

treatment, or at least further study. 

The comparison of means for control vs. treatment effects is analytically difficult, resulting in the 

Behrens-Fisher distribution for quantitative variables, and a complicated distribution for binary 

variables (Pham-Gia & Turkkan, 1993; Pham-gia, Thin, & Doan, 2017). This becomes intractable 

without restrictive assumptions for differences in differences comparisons.  These difficulties are 

avoided by drawing a pseudo-sample from the marginal posterior from each group, and subtracting 

the samples from one another to obtain a sample from the posterior of the difference in means 

(Lancaster, 2004).  For example, for a treatment group sample, , with unknown population ATE, 

, and variance, , and a control group sample, , with unknown ATE, , and variance, , the 

posterior density for  can be computed by pseudo-random sampling from the posterior 

density for each sample mean (or proportion if the outcome variables are categorical).  This same 

algorithm can then be used to carry this procedure further and compute differences of the differences, 

obtaining the posterior density of the difference in efficacy of treatment vs. control from two different 

treatments, or from one-time period to the next.  This allows comparison of ATE differences for two 



different treatments or in a treatment at two different time periods, which readily extends to  

different treatment groups and  time periods.  These advantages of using posterior simulation 

have not, to our knowledge, previously been fully exploited for analysis of RCTs. 

The testing procedure above can be implemented by drawing a MC pseudo-sample from the posterior 

of , evaluating the kernel density at 0 and , and computing the posterior odds given by equation (2).  

This circumvents problems due to analytical intractability and allows computations of the posterior 

density and odds with far fewer restrictions than are necessary when deriving the posterior analytically.  

The law of large numbers assures that the expected value of any function of the MC sample converges 

to its true value, i.e. for a sample of  draws for , as , 

 

where  is the th pseudo-sample value.  The accuracy of the simulated posterior density can be 

increased by increasing the pseudo-sample size, .  Chen (2005) provides guidance on alternative, 

more efficient posterior density evaluation algorithms when more analytical structure can be placed 

on the posterior densities, which have been examined in the context of ANOVA testing (Mills & 

Namavari, 2018). 

3. Testing ATE differences with categorical outcome data 

Categorical treatment outcomes are common in RCTs and may reflect events (e.g., complication, 

stroke, etc. or categorical clinical status, such as remission or response). The goal is to evaluate ATE 

for a particular treatment relative to control group, then to compare ATEs for different treatments or 

for a particular treatment outcome at different time periods. This section utilizes the hypothesis testing 

and posterior simulation approach presented in section 2 to develop a procedure for comparison of 

treated vs. control categorical outcomes in RCTs.  This is then extended to allow comparison of 

average treatment effect (ATE) of different treatments relative to control.   

When the outcome of an RCT is either success or not (such as remission or not), this naturally leads 

to a Binomial likelihood.  Standard Bayesian inference using a Beta(𝑎, 𝑏) prior with 𝑎 = 𝑏 = ½ or 1 



is noncontroversial, resulting in a posterior, Beta(𝑠 + 𝑎, 𝑛 − 𝑠 +  𝑏), for  observed successes in . 

When there are 𝐺 > 2 treatment groups (and similarly for 𝑇 > 2 time periods), a Dirichlet, 

(𝛼1, … , 𝛼𝐺  is the natural conjugate prior for the multinomial likelihood, leading to a Dirichlet, 

𝛼1, … , 𝛼𝐺  posterior, where �̅�𝑔 =  𝛼𝑔 + 𝑠𝑔, and  is the number of 

successful outcomes in  trials (Gelman et al., 2014). 

The observed data for each group are represented by 𝑦𝑖𝑔𝑡 = 1, if treatment is effective, 0 otherwise, 

for individual  in treatment group  at time period .  The number successfully treated out of  

subjects in group  at time period  is , and the probability of effective treatment for 

group  at time period , . With prior , and likelihood 

 the posterior is , with 

  for a uniform prior for .  This results in a treatment and a placebo group posterior density for 

each of the two treatments.  To compare posterior means for , we proceed numerically using MC 

simulation.  This avoids Behrens-Fisher type problems and allows for unequal and unknown variances 

across samples.  The algorithms are as follows. 

Algorithm 1: Two categorical treatment outcomes ATE. 

1. Draw  from   

2. Compute the posterior for ATE in time period ,  from the MC sample  

.  

3. Compute posterior moments, highest posterior density (HPD) intervals and posterior  

density plots from the sample  to evaluate the ATE for , vs. . 

4. Test , vs.  using the posterior odds from the MC sample,  

where  is the MAP estimate of   



The posterior odds, , provide evidence against the null hypothesis of no difference in ATE.  For 

 categorical treatment outcomes ATE, replace step 1. of Algorithm 1 with drawing from 

𝛼1, … , 𝛼𝐺 , then compute  for each outcome relative to the 

control group.  

Algorithm 2: Categorical outcome ATE comparison of two treatments. 

1. Perform steps 1. and 2. of Algorithm 1 for each of the two treatments to obtain MC samples 

. 

2. Compute the posterior density for the difference in efficacy between treatments from the MC 

samples, . 

3. Compute posterior moments, HPD intervals and posterior density plots from the sample  

to evaluate difference in efficacy between the two treatments. 

4. Test , vs.  using the objective posterior odds computed from the 

MC sample,  

where  is the MAP estimate of  

 

4.  Testing ATE differences with quantitative data 

The Bayesian machinery described above can be leveraged for posterior inference and testing with 

quantitative outcomes. There is not always so obvious a choice for likelihood specification as with 

Bernoulli trials when the outcome of an experimental trial is a quantitative measure, so some 

discussion of initial distributional assumption is warranted.  An advantage of the proposed approach 

is that any distribution can be adopted to represent outcomes from the different groups, with possibly 

different distributional assumptions for different groups.  Testing for heterogeneity can be 

implemented (Ding, Feller, & Miratrix, 2018) with no assumption of homogeneity required with regard 

to any of the parameters of the different sample distributions.   Further, by employing grid 

approximations to the empirical sample distribution, a nonparametric approach is also possible.  



However, experience with data from many RCTs, along with central limit theorem (CLT) and 

information theoretic (maximum entropy) justifications, indicate that an assumption of normally 

distributed outcomes is generally reasonable for the standard comparison of means analysis that is 

typically needed with RCTs, unless further model structure is to be imposed.   

Given two samples from an RCT for a treatment group, , and a control group, , and assuming 

the validity of the CLT and the maximum entropy principle to this case, under fairly general regularity 

conditions, regardless of the distribution of each sample,  where  is the 

observed outcome for individual  in treatment group , the likelihood function for the mean of each 

sample will be approximately Gaussian,  , with 

unknown mean, , and variance, .  In this case, the sample mean, sample variance, and number of 

observations are sufficient statistics to fully determine the likelihood.  The Jeffreys prior, 

 is a standard choice to represent uninformative prior beliefs 

concerning  and , and results in a Normal-Inverse Gamma (NIG) joint posterior density.  An NIG 

prior can also be used which results in the same NIG posterior functional form.  The resulting 

marginal posterior density for 𝜇𝑔 is,  

6  

which is in the form of a Student-t density with , and .  The 

marginal posterior density for  is an Inverted-Gamma, /2 /2  (Gelman et al., 2004).  A 

secondary goal can be to determine if the variances are equal across samples.  In a frequentist 

approach, this is often conducted as a pre-test to decide whether equality of variances can be assumed 

when testing for equality of means.  This pre-testing is unnecessary with the Bayesian approach as 

posterior simulation allows for inference and testing without any restrictions on the variances in each 

sample, and without conditioning on particular point estimate values for each variance. 



The marginal density for  is generally the posterior of interest.  For each of the two samples,  and 

, a large Monte Carlo (MC) sample for each mean is obtained by pseudo-random draws from this 

Student-t distribution, (6). The posterior density of the difference in means for the two samples  

, is then computed from the difference of the two MC samples using (3).  

The algorithm for comparison of ATE across treatments or time periods is then similar to Algorithm 

1, except the initial distribution for posterior simulation is a Student-t instead of a Beta, and the 

parameter of interest is the mean difference in ATE rather than the mean difference in proportion of 

successes.  For a particular time period,  (with the time period subscript removed to simplify the 

notation), the algorithm is as follows. 

Algorithm 3: Quantitative treatment outcome ATE comparison. 

1. Given sample means,  and , sample standard deviations  and , and samples sizes  

and , obtain a pseudo-random sample, , from each of the 

marginal posterior distributions , which are Student-t distributions, as in (6). 

2. Compute  differences in means for treatment vs. control, .   

3. Compute the posterior density for the difference in ATE between treatments from the MC 

samples of differences in means to evaluate ATE for a particular treatment.   

4. Test , vs.  using the posterior odds computed from the MC sample,  

where  is the MAP estimate of  

Algorithm 4: Quantitative treatment outcome ATE comparison of two treatments. 

1. Perform steps 1. and 2. of Algorithm 3 for each of the two treatments to obtain MC samples 

. 

2. Compute the posterior density for the difference in ATE between treatments from the MC 

samples, .  



3. Compute posterior moments, HPD intervals and posterior density plots from the sample  

to evaluate difference in efficacy between the two treatments.  

4. Test , vs.  using the objective posterior odds computed from the 

MC sample,  

where  represents the sample from treatment group  (treatment or control) for treatment 

 (e.g. drug ), and  is the MAP estimate of   

It is important to emphasize that the posterior distribution obtained in this way is the small sample 

distribution, so no asymptotic convergence assumptions are required, and no restrictive assumptions 

on the variances or number of observations of the different samples is imposed.  The algorithm 

extends in an obvious manner to comparing more than two treatments by conducting pairwise 

comparisons.  Mills and Namavari (2018) perform a simulation study for multiple testing with the 

above algorithm using an ANOVA framework, and find that the procedure performs well in 

comparison to the standard Welch t-test and a frequentist seemingly unrelated regression (SUR). 

5. Sequential Bayesian updating

The Bayesian inferential machinery naturally allows for sequential updating as new data become 

available, with no requirement to specify a stopping rule before a randomized trial begins, and no need 

for Bonferroni type multiple testing bias corrections (Berry et al., 2010). This allows for both early 

stopping if evidence suggests efficacy or not, and for continuing a study if the evidence to date is only 

suggestive of possible efficacy.  Given the costs, both clinical and financial, of conducting randomized 

controlled studies in many settings, this flexibility is an important feature of Bayesian inference that 

researchers wish to take advantage of.  By combining the Bayesian inferential updating process with 

the novel hypothesis testing methodology, and fully leveraging posterior simulation methods to allow 

fewer distributional assumptions, sequential testing and analysis for RCTs becomes viable. 

For categorical data, since the Beta distribution is the natural conjugate prior for the binomial 

likelihood, the posterior density remains Beta with the parameters updated as new data become 



available.  As in section 3, with a (𝑎, 𝑏) prior, the posterior for one sample, 𝑛1, 𝑠1, is 

  For a second sample from the same population, 𝑛2, 𝑠2, the updated 

posterior is  (Gelman et al., 2004).   

For quantitative data, suppose we have an initial sample of data, (omitting the group and time period 

subscript for notational simplicity), consisting of 𝑛 observations. As in section 4, since there is no 

compelling reason to think that a Gaussian distribution for the sample mean is inappropriate, CLTs 

and the maximum entropy principle strongly suggest adopting a Gaussian likelihood, 𝑥 

.  Adopting either an uninformative prior distribution, 𝑝(𝜇 , )  or if additional 

prior information is available an NIG prior, leads to a Student-t marginal posterior for , 

 as in equation (6). Suppose a second sample of  observations is obtained from the 

same distribution,   Combining with the likelihood for , it can be shown that the 

marginal posterior for  based on the combined sample  is where, with 

an uninformative prior,   and  

(Gelman et al., 2004). These posterior summary statistics provide sufficient information to completely 

determine the posterior distribution, so these updating equations can be used as more observations 

become available and the functional forms of the posteriors remain the same.   

This flexibility to examine the evidence from data as it becomes available, with no prior stopping rule 

required, is an important advantage of Bayesian inferential methods.  This advantage carries over to 

the Bayesian hypothesis testing procedure, so if evidence becomes conclusive earlier than expected 

(as when a new treatment performs much better than a control or current treatment), the clinical, 

financial and time savings can be substantial. Along with the evaluation algorithms developed in 

previous sections, the sequential procedures herein are applied to a large clinical trial of anxious youth 

in the next section. 

6. Application: The Child/Adolescent Anxiety Multimodal Study   

In pediatric populations and in certain diseases (e.g., psychiatric disorders), a confluence of 

psychological, neurobiological, developmental, genetic and social determinants of both symptom 



expression and treatment response contribute to high levels of within-sample variance. This 

heterogeneity further influences drug-placebo separation (Dobson & Strawn, 2016). Additionally, 

placebo-controlled RCTs may not reflect “highly individualized interventions” (Bothwell et al., 2016), 

may fail to capture intervention-nonspecific aspects of treatment (Ablon & Jones, 2002) and could 

delay treatment for some individuals (Kennard et al., 2009). In child and adolescent psychiatry, where 

the evidence-base for treatment often lags the evidence base for the same interventions in adults, 

RCTs are urgently needed. Yet, RCTs in children and adolescents are expensive and, in some cases, 

cost-prohibitive and intensely resource demanding—a particularly important consideration given a 

near crisis-level shortage of child and adolescent psychiatrists and given that there are few child and 

adolescent psychiatrists with clinical trials expertise (Walkup, 2017).  

To address these limitations, which are often compounded in pediatric clinical trials, strategies to: (1) 

decrease placebo-response rates (Kowatch et al., 1999; Stein et al., 2006; Nakonezny et al., 2015); (2) 

increase sample homogeneity; (3) optimize randomization (Lee & Chu, 2012) and (4) mirror clinical 

practice (e.g., adaptive trial designs) (Almirall et al., 2012) have been proposed. However, the statistical 

methodology for evaluating drug-placebo differences has remained largely unchanged.  The 

contribution herein provides a new methodology that employs recent advances in statistical technique 

for an improved analysis, in particular, modern MC simulation methods and a new approach to 

Bayesian hypothesis testing providing posterior odds ratios in place of frequentist p-values. 

Antidepressant medications are commonly used to treat anxiety disorders in children and adolescents 

(Wehry et al., 2015), conditions associated with significant morbidity and mortality. Nearly a dozen 

RCTs and three meta-analyses (Locher et al., 2017; Strawn, Welge, Wehry, Keeshin, & Rynn, 2015; 

Wang et al. 2017) support the efficacy and tolerability of these medications. However, non-medication-

related factors frequently influence drug-placebo differences, and individual clinical trials are often 

small. Moreover, the type of anxiety disorder under study, age distribution of the participating patients, 

randomization strategy (e.g., balanced or unbalanced), the number of study sites and inclusion criteria 

substantially contribute to heterogeneity (Dobson & Strawn, 2016; Nakonezny et al., 2015; Strawn et 

al., 2017; Varigonda, Jakubovski, & Bloch, 2016). These limitations of current clinical trial design, 

particularly in pediatric patients, results in attempts to attenuate the influence of these factors by 

increasing the sample size. In turn, this approach makes these clinical trials more expensive, increases 



placebo exposure, prolongs the duration of the clinical trial, and delays the delivery of results to 

clinicians who ultimately rely on these data to improve treatments.   

The largest trial of an antidepressant in pediatric patients with anxiety disorders, the Child/Adolescent 

Anxiety Multimodal Study (CAMS), evaluated children and adolescents aged 7-17 years with anxiety 

disorders and compared (1) cognitive behavioral therapy (CBT); (2) the antidepressant, sertraline; (3) 

CBT + sertraline and (4) placebo. This 5-year study randomized children (N=488) (2:2:2:1) to these 

interventions and was conducted at 6 centers across the United States.  The study methods have been 

extensively described in prior publications (Compton et al., 2010) as have baseline characteristics of 

the patients (Kendall et al., 2010), acute (Walkup et al., 2008) and long-term outcomes (Piacentini et al., 

2014). Response was measured by using categorical and dimensional measures. As described in the 

initial efficacy study (Walkup et al. 2008), categorical response was defined by a score of 1 (very much 

improved) or 2 (much improved) on the Clinical Global Impression–Improvement Scale (CGI-I) 

(Guy, 1976) which ranges from 1 to 7 (lower scores reflect greater improvement, as compared with 

baseline), whereas the Pediatric Anxiety Rating Scale (PARS) score (RUPP, 2002) was  the primary 

dimensional outcome measure for anxiety symptom severity.  

The CAMS dataset permits validation of our approach and allows us to assess the impact of relaxing 

restrictive assumptions regarding variance-covariance structure and medication response. 

Additionally, the impact of decreasing the sample size can be evaluated in CAMS. Specifically, by 

leveraging sequential analysis to optimize sample size, we are able to assess the feasibility of conducting 

the study with a smaller sample.  

For the past four decades, successful treatment of psychiatric disorders has been operationalized as a 

patient having minimal symptoms or impairment and is defined by a CGI-I score <2 (Guy, 1976). 

The CGI-I, a clinician-administered instrument, is anchored with the question: “Compared to his or 

her condition at baseline, how much has he or she changed?” is rated on a seven-point scale. Scores 

of 1 reflect patients who are “very much improved;” scores of 2 reflect patients who are “much 

improved;” scores of 3 describe patients who are “minimally improved;” scores of 4 reflect patients 

who have had “no change;” scores of 5 reflect patients who are “minimally worse;” and scores of 6 

and 7 are associated with the descriptions “much worse” and “very much worse,” respectively.  The 



rating - which is performed by a clinician - is based both on observed and reported symptoms, 

functional impairment and behavior over a 7 day period.  

Figure 1 presents the posterior densities for the ATE for each treatment and placebo group, with the 

posterior densities for the differences and difference in differences given in the bottom panel.  This 

provides evidence of difference in efficacy between just sertraline relative to placebo compared to 

sertraline combined with CBT relative to placebo.  The posterior odds, Bayesian density tail areas (p-

values) and 0.95 HPD intervals in Table 1 indicate that for the sertraline vs. placebo comparison the 

posterior odds are 16.7:1 against no difference.  Posterior odds for treatment that includes sertraline 

+ CBT compared to placebo are greater than 5000:1, providing strong evidence of efficacy for these 

active treatments (vs. placebo).  Finally, posterior odds are 72.8:1 against no difference between 

sertraline with CBT vs. sertraline monotherapy, controlling for placebo effect. 

 

FIGURE 1: Posterior density functions for means and differences in CGI 



      Table 1: Posterior Odds of Difference in Categorical ATE 

 Odds against  Bayesian p-value 0.95 HPD 

 sertraline - placebo 16.69 0.0180 0.03, 0.30 

 sertraline+CBT - placebo >50000.0 <0.0001 0.32, 0.56 

 72.80 0.0033 0.09, 0.46 

 

The PARS score provides a quantitative measure of improvement in anxiety symptom severity. It 

consists of a 50-item clinician-rated checklist of anxiety symptoms in children/adolescents in addition 

to 7 dimensional questions related to anxiety symptom severity (i.e., number of symptoms, severity of 

symptom distress, behavioral avoidance, interference at home and outside of home) that are rated on 

a 6-point scale (0 = none to 5 = extreme). Higher scores represent higher levels of distress and anxiety. 

 

FIGURE 2: Posterior density functions for means and differences in PARS 

 

 



      Table 2: Posterior Odds of Difference in Quantitative ATE 

 Odds against  Bayesian p-value 0.95 HPD 

 Sertraline - placebo 15.73 0.0194 -4.63, -0.41 

 Sertraline+CBT - placebo 24400.8 <0.0001 -6.94, -1.93 

 2.45 0.1832 -0.91, 4.75 

 

Figure 2 presents posterior density functions for mean PARS score and posterior densities of the 

difference between treatment (sertraline and CBT) groups and control (placebo) groups in CAMS. 

Posterior odds, Bayesian density tail areas (p-values) and 0.95 HPD intervals are provided in Tables 2.  

For the quantitative PARS data, there is clear evidence that both sertraline, and the combination of 

sertraline and CBT provide significant ATE improvements over placebo, whereas there is no 

statistically significant evidence of a difference in efficacy between the two treatments. 

It is of interest that the categorical analysis reveals a statistically significant difference between 

sertraline + CBT and sertraline monotherapy whereas the quantitative analysis does not indicate a 

significant difference (odds   This difference potentially relates to differences in 

the instruments. For example, the CGI-I better reflects symptom severity as well as functional 

impairment, whereas the PARS (quantitative measure) primarily reflects symptom severity.   This also 

contrasts with the original study (Walkup et al., 2008) which leveraged trajectory trend model 

assumptions, resulting in a likelihood with smaller variance.  Adopting the same trend based likelihood 

would lead to a similar reduction in posterior variance for the methodology proposed herein.   

A Sequential analysis comparing difference in efficacy, as measured by PARS for sertraline + CBT vs. 

placebo, and sertraline vs. placebo provides evidence on potential advantages of the approach.  The 

study used a 2:1 ratio of treatment to placebo.  The sequential analysis was therefore conducted starting 

with 8 treated and 4 placebo subjects and adding an additional 8 treated and 4 placebo receiving 

subjects each round of the analysis.  To illustrate the results, posterior densities are given in Figure 3 

up to the first 192 observations, maintaining the 2:1 treated to placebo ratio.  

 



FIGURE 3: Sequential posterior densities 

 

Table 3: Sequential odds against no difference 

N Odds p-value N Odds p-value 
12 1.0 0.7982 108 904.2 0.0003 
24 1.0 0.8337 120 402.3 0.0006 
36 1.2 0.5753 132 307.6 0.0008 
48 6.3 0.0628 144 680.9 0.0003 
60 4.8 0.0823 156 1333.6 0.0001 
72 64.3 0.0045 168 3252.2 4.8e-5 
84 522.5 0.0006 180 4895.7 2.4e-5 
96 295.1 0.0009 192 8006.1 2.0e-5 



As evident from Table 3, with less than half the sample (84 subjects, 56 treated, 28 placebo), the 

posterior odds are already over 500:1 against no difference in ATE. Thus, for the detection of the 

primary outcomes, the study could have ended earlier (1) decreasing placebo exposure, (2) reducing 

financial cost and (3) resulting in earlier dissemination of the study findings.  

7. Conclusion 

A new procedure for evaluating the evidence from RCTs has been presented that has several 

advantages over the prevailing approach.  The new procedure exploits posterior simulation methods 

to allow ease of use with fewer distributional assumptions than previously possible. In particular, there 

is no requirement to impose any restrictive assumptions about unknown variances from different 

samples, and by marginalizing with respect to all nuisance parameters rather than conditioning on 

‘plug-in’ estimators, the uncertainty due to the unknown parameters is accounted for.  Moreover, this 

approach allows for exact inference with regard to the relative comparative efficacy and tolerability of 

treatments as opposed to reliance on asymptotic approximations. 

A new testing procedure is also introduced that has a number of important advantages over both 

frequentist testing methods and previously available Bayesian methods.  The presentation of odds, as 

opposed to standard effect sizes and p-values, decreases the possibility of misinterpretation of p-values 

by practitioners (McShane & Gal, 2017), and does not require a choice between reporting a p-value 

for one or two-tail areas.   Lastly, sequential updating of evidence is easily conducted allowing for 

more flexible adaptive trial designs. 

This approach to analyzing RCTs is applied to the CAMS data and suggests that, had these approaches 

been utilized, a smaller sample size may have been required and so the study could possibly have been 

conducted over a shorter period of time.  Finally, this procedure has also been used for evaluation of 

prior psychopharmacologic treatments and comparative efficacy studies (Strawn et al., 2018). 
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